RATIONALE: 3,4-Methylenedioxymethamphetamine (MDMA) is an amphetamine derivative, which is neurotoxic to both serotonin (5HT) and dopamine (DA) nerve terminals. Previous reports, carried out in rodents and non-human primates, demonstrated neurotoxicity to monoamine axon terminals, although no study has analyzed nigral and striatal cell bodies at the sub-cellular level. OBJECTIVE: In this study, we examined intrinsic nigral and striatal cells, and PC12 cell cultures to evaluate whether, in mice, MDMA might affect nigral and striatal cell bodies. METHODS: After administering MDMA, we analyzed effects induced in vivo and in vitro using high-performance liquid chromatography (HPLC) analysis, light- and electron microscopy with immunocytochemistry, and DNA comet assay. RESULTS: We found that MDMA (5 mg/kg x4, 2 h apart), besides a decrease of nigrostriatal DA innervation and 5HT loss, produces neuronal inclusions within nigral and intrinsic striatal neurons consisting of multi-layer ubiquitin-positive whorls extending to the nucleus of the cell. These fine morphological changes are associated with clustering of heat shock protein (HSP)-70 in the nucleus, very close to chromatin filaments. In the same experimental conditions, we could detect oxidation of DNA bases followed by DNA damage. The nature of inclusions was further investigated using PC12 cell cultures. CONCLUSIONS: The present findings lead to re-consideration of the neurotoxic consequences of MDMA administration. In fact, occurrence of ubiquitin-positive neuronal inclusions and DNA damage both in nigral and striatal cells sheds new light into the fine alterations induced by MDMA, also suggesting the involvement of nuclear and cytoplasmic components of the ubiquitin-proteasome pathway in MDMA toxicity.

DNA damage and ubiquitinated neuronal inclusions in the substantia nigra and striatum of mice following MDMA (ecstasy)

FORNAI, FRANCESCO;LENZI, PAOLA;FRENZILLI, GIADA;GESI, MARCO;FERRUCCI, MICHELA;LAZZERI, GLORIA;PELLEGRINI, ANTONIO;NIGRO, MARCO;FALLENI, ALESSANDRA;PAPARELLI, ANTONIO
2004-01-01

Abstract

RATIONALE: 3,4-Methylenedioxymethamphetamine (MDMA) is an amphetamine derivative, which is neurotoxic to both serotonin (5HT) and dopamine (DA) nerve terminals. Previous reports, carried out in rodents and non-human primates, demonstrated neurotoxicity to monoamine axon terminals, although no study has analyzed nigral and striatal cell bodies at the sub-cellular level. OBJECTIVE: In this study, we examined intrinsic nigral and striatal cells, and PC12 cell cultures to evaluate whether, in mice, MDMA might affect nigral and striatal cell bodies. METHODS: After administering MDMA, we analyzed effects induced in vivo and in vitro using high-performance liquid chromatography (HPLC) analysis, light- and electron microscopy with immunocytochemistry, and DNA comet assay. RESULTS: We found that MDMA (5 mg/kg x4, 2 h apart), besides a decrease of nigrostriatal DA innervation and 5HT loss, produces neuronal inclusions within nigral and intrinsic striatal neurons consisting of multi-layer ubiquitin-positive whorls extending to the nucleus of the cell. These fine morphological changes are associated with clustering of heat shock protein (HSP)-70 in the nucleus, very close to chromatin filaments. In the same experimental conditions, we could detect oxidation of DNA bases followed by DNA damage. The nature of inclusions was further investigated using PC12 cell cultures. CONCLUSIONS: The present findings lead to re-consideration of the neurotoxic consequences of MDMA administration. In fact, occurrence of ubiquitin-positive neuronal inclusions and DNA damage both in nigral and striatal cells sheds new light into the fine alterations induced by MDMA, also suggesting the involvement of nuclear and cytoplasmic components of the ubiquitin-proteasome pathway in MDMA toxicity.
2004
Fornai, Francesco; Lenzi, Paola; Frenzilli, Giada; Gesi, Marco; Ferrucci, Michela; Lazzeri, Gloria; Pellegrini, Antonio; Blandini, F; Ruggieri, S; Nigro, Marco; Falleni, Alessandra; Giuliani, M; Paparelli, Antonio
File in questo prodotto:
File Dimensione Formato  
DNA damage.pdf

solo utenti autorizzati

Tipologia: Versione finale editoriale
Licenza: NON PUBBLICO - Accesso privato/ristretto
Dimensione 679.8 kB
Formato Adobe PDF
679.8 kB Adobe PDF   Visualizza/Apri   Richiedi una copia

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11568/91404
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? 10
  • Scopus 45
  • ???jsp.display-item.citation.isi??? 42
social impact