Mosquito and tick feeding activity represent a key threat for humans, livestock, pets and wildlife worldwide. Rearing these vectors in laboratory conditions is extremely important to investigate basic facets of their biology, vector competence, new control strategies, as well as mechanisms of pesticide resistance. However, the use of animals or humans to provide blood for hematophagous arthropod feeding poses a strict limit to these researches, due to the accidental transmission of diseases, ethical problems concerning animal welfare, as well as expensive and time-consuming animal rearing procedures. The use of devices to artificially feed arthropod vectors can importantly leverage progresses in parasitology and entomology. The aim of this review is to summarize current knowledge about artificial feeding of mosquitoes and ticks, focusing on key concepts and case studies about the design and fabrication of blood feeding devices. From a technical standpoint, the literature analyzed here showed little standardization of materials used for fabricating membrane interfaces, as well as in the strategy used to heat the “biomimetic host”. In addition, a lack of uniform methods to design an architecture merging complex and realistic cues with an easy-to-assemble approach have been found. Some commercial products are available, but they are quite expensive, thus hard to reach for many laboratories, especially in developing countries. An important challenge for future research is represented by the introduction of automation and bioinspired engineered solutions in these devices, improving the effectiveness of blood-feeding systems by increasing their host-mimicking features. Automation can reduce labor costs and provide interesting solutions – in line with the 3R principle “reduce, replace and refine” – aimed to minimize the employ of experimental animals in research.

Artificial blood feeders for mosquito and ticks—Where from, where to?

Stefanini, Cesare
Secondo
;
Canale, Angelo
Penultimo
;
Benelli, Giovanni
Ultimo
2018-01-01

Abstract

Mosquito and tick feeding activity represent a key threat for humans, livestock, pets and wildlife worldwide. Rearing these vectors in laboratory conditions is extremely important to investigate basic facets of their biology, vector competence, new control strategies, as well as mechanisms of pesticide resistance. However, the use of animals or humans to provide blood for hematophagous arthropod feeding poses a strict limit to these researches, due to the accidental transmission of diseases, ethical problems concerning animal welfare, as well as expensive and time-consuming animal rearing procedures. The use of devices to artificially feed arthropod vectors can importantly leverage progresses in parasitology and entomology. The aim of this review is to summarize current knowledge about artificial feeding of mosquitoes and ticks, focusing on key concepts and case studies about the design and fabrication of blood feeding devices. From a technical standpoint, the literature analyzed here showed little standardization of materials used for fabricating membrane interfaces, as well as in the strategy used to heat the “biomimetic host”. In addition, a lack of uniform methods to design an architecture merging complex and realistic cues with an easy-to-assemble approach have been found. Some commercial products are available, but they are quite expensive, thus hard to reach for many laboratories, especially in developing countries. An important challenge for future research is represented by the introduction of automation and bioinspired engineered solutions in these devices, improving the effectiveness of blood-feeding systems by increasing their host-mimicking features. Automation can reduce labor costs and provide interesting solutions – in line with the 3R principle “reduce, replace and refine” – aimed to minimize the employ of experimental animals in research.
2018
Romano, Donato; Stefanini, Cesare; Canale, Angelo; Benelli, Giovanni
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11568/920796
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? 14
  • Scopus 34
  • ???jsp.display-item.citation.isi??? 31
social impact