We report on a new all-sky search for periodic gravitational waves in the frequency band 475-2000 Hz and with a frequency time derivative in the range of [-1.0,+0.1]×10-8 Hz/s. Potential signals could be produced by a nearby spinning and slightly nonaxisymmetric isolated neutron star in our Galaxy. This search uses the data from Advanced LIGO's first observational run O1. No gravitational-wave signals were observed, and upper limits were placed on their strengths. For completeness, results from the separately published low-frequency search 20-475 Hz are included as well. Our lowest upper limit on worst-case (linearly polarized) strain amplitude h0 is ∼4×10-25 near 170 Hz, while at the high end of our frequency range, we achieve a worst-case upper limit of 1.3×10-24. For a circularly polarized source (most favorable orientation), the smallest upper limit obtained is ∼1.5×10-25.

Full band all-sky search for periodic gravitational waves in the O1 LIGO data

Allocca, A.;Basti, A.;Boschi, V.;Cerretani, G.;Del Pozzo, W.;Di Lieto, A.;Di Renzo, F.;Ferrante, I.;Ferrini, F.;Fidecaro, F.;Passaquieti, R.;Patricelli, B.;Poggiani, R.;Razzano, M.;Tonelli, M.;
2018-01-01

Abstract

We report on a new all-sky search for periodic gravitational waves in the frequency band 475-2000 Hz and with a frequency time derivative in the range of [-1.0,+0.1]×10-8 Hz/s. Potential signals could be produced by a nearby spinning and slightly nonaxisymmetric isolated neutron star in our Galaxy. This search uses the data from Advanced LIGO's first observational run O1. No gravitational-wave signals were observed, and upper limits were placed on their strengths. For completeness, results from the separately published low-frequency search 20-475 Hz are included as well. Our lowest upper limit on worst-case (linearly polarized) strain amplitude h0 is ∼4×10-25 near 170 Hz, while at the high end of our frequency range, we achieve a worst-case upper limit of 1.3×10-24. For a circularly polarized source (most favorable orientation), the smallest upper limit obtained is ∼1.5×10-25.
2018
Abbott, B.  P.; Abbott, R.; Abbott, T.  D.; Acernese, F.; Ackley, K.; Adams, C.; Adams, T.; Addesso, P.; Adhikari, R.  X.; Adya, V.  B.; Affeldt, C.; ...espandi
File in questo prodotto:
File Dimensione Formato  
PhysRevD.97.102003.pdf

accesso aperto

Tipologia: Versione finale editoriale
Licenza: Tutti i diritti riservati (All rights reserved)
Dimensione 3.16 MB
Formato Adobe PDF
3.16 MB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11568/923645
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 50
  • ???jsp.display-item.citation.isi??? 46
social impact