We prove that weak solutions obtained as limits of certain numerical space-time discretizations are suitable in the sense of Scheffer and Caffarelli-Kohn-Nirenberg. More precisely, in the space-periodic setting, we consider a full discretization in which the theta-method is used to discretize the time variable, while in the space variables we consider appropriate families of finite elements. The main result is the validity of the so-called local energy inequality.
Suitable weak solutions of the Navier-Stokes equations constructed by a space-time numerical discretization
LUIGI C. BERSELLI
Primo
;
2019-01-01
Abstract
We prove that weak solutions obtained as limits of certain numerical space-time discretizations are suitable in the sense of Scheffer and Caffarelli-Kohn-Nirenberg. More precisely, in the space-periodic setting, we consider a full discretization in which the theta-method is used to discretize the time variable, while in the space variables we consider appropriate families of finite elements. The main result is the validity of the so-called local energy inequality.File in questo prodotto:
File | Dimensione | Formato | |
---|---|---|---|
1710.01579-spirito-fagioli.pdf
accesso aperto
Descrizione: preprint
Tipologia:
Documento in Pre-print
Licenza:
Creative commons
Dimensione
434.03 kB
Formato
Adobe PDF
|
434.03 kB | Adobe PDF | Visualizza/Apri |
1710.01579-revised.pdf
Open Access dal 01/06/2021
Tipologia:
Documento in Post-print
Licenza:
Creative commons
Dimensione
243.12 kB
Formato
Adobe PDF
|
243.12 kB | Adobe PDF | Visualizza/Apri |
JMPA2019.pdf
solo utenti autorizzati
Tipologia:
Versione finale editoriale
Licenza:
NON PUBBLICO - Accesso privato/ristretto
Dimensione
571.75 kB
Formato
Adobe PDF
|
571.75 kB | Adobe PDF | Visualizza/Apri Richiedi una copia |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.