ATP citrate lyase (ACLY) is a cytosolic homotetrameric enzyme that catalyzes the conversion of citrate and coenzyme A (CoA) to acetyl-CoA and oxaloacetate, with the simultaneous hydrolysis of ATP to ADP and phosphate. Interestingly, ACLY is a strategic enzyme linking both the glycolytic and lipidic metabolism. In tumour cells characterized by an altered energetic metabolism, an increased glucose uptake and an accelerated glycolytic flux lead to an intensified production of mitochondrial citrate. Once transported to the cytosol, citrate is here converted by ACLY to acetyl-CoA, an essential biosynthetic precursor for fatty acid synthesis and mevalonate pathway. ACLY expression and activity proved to be aberrantly expressed in many types of tumours, and its pharmacological or genetic inhibition significantly inhibited cancer cell proliferation and induced apoptosis. Increasing evidences highlight the central role of ACLY, conferring a great therapeutic potential to this enzyme as a key target for the treatment of cancer. ACLY inhibitors, previously developed for metabolic disorders, have recently attracted interest as promising anti-cancer agents. After a brief introduction to the structure and the pathophysiological role of ACLY, this review article provides an overview of the main ACLY inhibitors reported in the literature.

ATP citrate lyase (ACLY) inhibitors: An anti-cancer strategy at the crossroads of glucose and lipid metabolism

Granchi, Carlotta
Primo
2018-01-01

Abstract

ATP citrate lyase (ACLY) is a cytosolic homotetrameric enzyme that catalyzes the conversion of citrate and coenzyme A (CoA) to acetyl-CoA and oxaloacetate, with the simultaneous hydrolysis of ATP to ADP and phosphate. Interestingly, ACLY is a strategic enzyme linking both the glycolytic and lipidic metabolism. In tumour cells characterized by an altered energetic metabolism, an increased glucose uptake and an accelerated glycolytic flux lead to an intensified production of mitochondrial citrate. Once transported to the cytosol, citrate is here converted by ACLY to acetyl-CoA, an essential biosynthetic precursor for fatty acid synthesis and mevalonate pathway. ACLY expression and activity proved to be aberrantly expressed in many types of tumours, and its pharmacological or genetic inhibition significantly inhibited cancer cell proliferation and induced apoptosis. Increasing evidences highlight the central role of ACLY, conferring a great therapeutic potential to this enzyme as a key target for the treatment of cancer. ACLY inhibitors, previously developed for metabolic disorders, have recently attracted interest as promising anti-cancer agents. After a brief introduction to the structure and the pathophysiological role of ACLY, this review article provides an overview of the main ACLY inhibitors reported in the literature.
2018
Granchi, Carlotta
File in questo prodotto:
File Dimensione Formato  
2018_EurJMedChem_review-ACLY.pdf

solo utenti autorizzati

Descrizione: reprint
Tipologia: Versione finale editoriale
Licenza: NON PUBBLICO - Accesso privato/ristretto
Dimensione 1.1 MB
Formato Adobe PDF
1.1 MB Adobe PDF   Visualizza/Apri   Richiedi una copia
text.pdf

Open Access dal 22/01/2021

Descrizione: Post-print
Tipologia: Documento in Post-print
Licenza: Creative commons
Dimensione 1.15 MB
Formato Adobe PDF
1.15 MB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11568/928752
Citazioni
  • ???jsp.display-item.citation.pmc??? 50
  • Scopus 140
  • ???jsp.display-item.citation.isi??? 130
social impact