We study the optimal sets (Formula presented.) for spectral functionals of the form (Formula presented.), which are bi-Lipschitz with respect to each of the eigenvalues (Formula presented.) of the Dirichlet Laplacian on Ω, a prototype being the problem min(Formula presented.) We prove the Lipschitz regularity of the eigenfunctions u1…up, of the Dirichlet Laplacian on the optimal set Ω*and, as a corollary, we deduce that Ω*is open. For functionals depending only on a generic subset of the spectrum, as for example λk(Ω), our result proves only the existence of a Lipschitz continuous eigenfunction in correspondence to each of the eigenvalues involved.

Lipschitz Regularity of the Eigenfunctions on Optimal Domains

Pratelli, Aldo;Velichkov, Bozhidar
2015-01-01

Abstract

We study the optimal sets (Formula presented.) for spectral functionals of the form (Formula presented.), which are bi-Lipschitz with respect to each of the eigenvalues (Formula presented.) of the Dirichlet Laplacian on Ω, a prototype being the problem min(Formula presented.) We prove the Lipschitz regularity of the eigenfunctions u1…up, of the Dirichlet Laplacian on the optimal set Ω*and, as a corollary, we deduce that Ω*is open. For functionals depending only on a generic subset of the spectrum, as for example λk(Ω), our result proves only the existence of a Lipschitz continuous eigenfunction in correspondence to each of the eigenvalues involved.
2015
Bucur, Dorin; Mazzoleni, Dario; Pratelli, Aldo; Velichkov, Bozhidar
File in questo prodotto:
File Dimensione Formato  
bmpv140520.pdf

accesso aperto

Descrizione: Articolo
Tipologia: Documento in Post-print
Licenza: Tutti i diritti riservati (All rights reserved)
Dimensione 413.89 kB
Formato Adobe PDF
413.89 kB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11568/928792
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 38
  • ???jsp.display-item.citation.isi??? 33
social impact