In this paper, we consider the isoperimetric problem in the space RNwith a density. Our result states that, if the density f is lower semi-continuous and converges to a limit a> 0 at infinity, with f≤ a far from the origin, then isoperimetric sets exist for all volumes. Several known results or counterexamples show that the present result is essentially sharp. The special case of our result for radial and increasing densities positively answers a conjecture of Morgan and Pratelli (Ann Glob Anal Geom 43(4):331–365, 2013.

Existence of Isoperimetric Sets with Densities “Converging from Below” on RN

Pratelli, Aldo
2017-01-01

Abstract

In this paper, we consider the isoperimetric problem in the space RNwith a density. Our result states that, if the density f is lower semi-continuous and converges to a limit a> 0 at infinity, with f≤ a far from the origin, then isoperimetric sets exist for all volumes. Several known results or counterexamples show that the present result is essentially sharp. The special case of our result for radial and increasing densities positively answers a conjecture of Morgan and Pratelli (Ann Glob Anal Geom 43(4):331–365, 2013.
2017
De Philippis, Guido; Franzina, Giovanni; Pratelli, Aldo
File in questo prodotto:
File Dimensione Formato  
AGG_Accepted.pdf

accesso aperto

Descrizione: Articolo
Tipologia: Documento in Post-print
Licenza: Tutti i diritti riservati (All rights reserved)
Dimensione 352.07 kB
Formato Adobe PDF
352.07 kB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11568/928809
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 17
  • ???jsp.display-item.citation.isi??? 18
social impact