In this article we develop an analogue of Aubry–Mather theory for a class of dissipative systems, namely conformally symplectic systems, and prove the existence of interesting invariant sets, which, in analogy to the conservative case, will be called the Aubry and the Mather sets. Besides describing their structure and their dynamical significance, we shall analyze their attracting/repelling properties, as well as their noteworthy role in driving the asymptotic dynamics of the system.

Aubry–Mather Theory for Conformally Symplectic Systems

Maro', S.;
2017-01-01

Abstract

In this article we develop an analogue of Aubry–Mather theory for a class of dissipative systems, namely conformally symplectic systems, and prove the existence of interesting invariant sets, which, in analogy to the conservative case, will be called the Aubry and the Mather sets. Besides describing their structure and their dynamical significance, we shall analyze their attracting/repelling properties, as well as their noteworthy role in driving the asymptotic dynamics of the system.
2017
Maro', S.; Sorrentino, A.
File in questo prodotto:
File Dimensione Formato  
AMTheoryConfSymp_ACCEPTED.pdf

accesso aperto

Tipologia: Documento in Post-print
Licenza: Tutti i diritti riservati (All rights reserved)
Dimensione 701.69 kB
Formato Adobe PDF
701.69 kB Adobe PDF Visualizza/Apri
s00220-017-2900-3.pdf

non disponibili

Tipologia: Versione finale editoriale
Licenza: NON PUBBLICO - accesso privato/ristretto
Dimensione 1.08 MB
Formato Adobe PDF
1.08 MB Adobe PDF   Visualizza/Apri   Richiedi una copia

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11568/931220
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 32
  • ???jsp.display-item.citation.isi??? 29
social impact