We prove the existence of at least two geometrically different periodic solutions with winding number N for the forced relativistic pendulum. The instability of a solution is also proved. The proof is topological and based on the version of the Poincaré–Birkhoff theorem by Franks. Moreover, with some restriction on the parameters, we prove the existence of twist dynamics.

Periodic solutions of a forced relativistic pendulum via twist dynamics

Maro', S.
2013-01-01

Abstract

We prove the existence of at least two geometrically different periodic solutions with winding number N for the forced relativistic pendulum. The instability of a solution is also proved. The proof is topological and based on the version of the Poincaré–Birkhoff theorem by Franks. Moreover, with some restriction on the parameters, we prove the existence of twist dynamics.
2013
Maro', S.
File in questo prodotto:
File Dimensione Formato  
post_print_TMNA.pdf

accesso aperto

Tipologia: Documento in Post-print
Licenza: Tutti i diritti riservati (All rights reserved)
Dimensione 493.72 kB
Formato Adobe PDF
493.72 kB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11568/931232
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 19
  • ???jsp.display-item.citation.isi??? 18
social impact