After surveying existing proofs that every closed, orientable 3-manifold is parallelizable, we give three proofs using minimal background. In particular, our proofs do not rely on spin structures, the theory of Stiefel-Whitney classes, nor the Lickorish-Wallace theorem.
Framing 3-manifolds with bare hands
LISCA Paolo
2018-01-01
Abstract
After surveying existing proofs that every closed, orientable 3-manifold is parallelizable, we give three proofs using minimal background. In particular, our proofs do not rely on spin structures, the theory of Stiefel-Whitney classes, nor the Lickorish-Wallace theorem.File in questo prodotto:
| File | Dimensione | Formato | |
|---|---|---|---|
|
Lisca_934606.pdf
accesso aperto
Tipologia:
Versione finale editoriale
Licenza:
Creative commons
Dimensione
292.67 kB
Formato
Adobe PDF
|
292.67 kB | Adobe PDF | Visualizza/Apri |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.


