We study the problem of linking the terms of a web-search query to a semantic representation given by the set of entities (a.k.a. concepts) mentioned in it. We introduce SMAPH, a system that performs this task using the information coming from a web search engine, an approach we call “piggybacking.” We employ search engines to alleviate the noise and irregularities that characterize the language of queries. Snippets returned as search results also provide a context for the query that makes it easier to disambiguate the meaning of the query. From the search results, SMAPH builds a set of candidate entities with high coverage. This set is filtered by linking back the candidate entities to the terms occurring in the input query, ensuring high precision. A greedy disambiguation algorithm performs this filtering; it maximizes the coherence of the solution by iteratively discovering the pertinent entities mentioned in the query. We propose three versions of SMAPH that outperform state-of-the-art solutions on the known benchmarks and on the GERDAQ dataset, a novel dataset that we have built specifically for this problem via crowd-sourcing and that we make publicly available.

SMAPH: A Piggyback Approach for Entity-Linking in Web Queries

Paolo Ferragina;
2019

Abstract

We study the problem of linking the terms of a web-search query to a semantic representation given by the set of entities (a.k.a. concepts) mentioned in it. We introduce SMAPH, a system that performs this task using the information coming from a web search engine, an approach we call “piggybacking.” We employ search engines to alleviate the noise and irregularities that characterize the language of queries. Snippets returned as search results also provide a context for the query that makes it easier to disambiguate the meaning of the query. From the search results, SMAPH builds a set of candidate entities with high coverage. This set is filtered by linking back the candidate entities to the terms occurring in the input query, ensuring high precision. A greedy disambiguation algorithm performs this filtering; it maximizes the coherence of the solution by iteratively discovering the pertinent entities mentioned in the query. We propose three versions of SMAPH that outperform state-of-the-art solutions on the known benchmarks and on the GERDAQ dataset, a novel dataset that we have built specifically for this problem via crowd-sourcing and that we make publicly available.
Cornolti, Marco; Ferragina, Paolo; Ciaramita, Massimiliano; Rüd, Stefan; Schütze, Hinrich
File in questo prodotto:
File Dimensione Formato  
smaph-piggyback-approach (final).pdf

accesso aperto

Tipologia: Documento in Pre-print
Licenza: Tutti i diritti riservati (All rights reserved)
Dimensione 1.04 MB
Formato Adobe PDF
1.04 MB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: http://hdl.handle.net/11568/938449
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 7
  • ???jsp.display-item.citation.isi??? 7
social impact