Technology improvements and cost reduction allow electrochemical energy storage systems based on Lithium-ion cells to massively be used in medium-power applications, where the low system cost is the major constraint. Battery pack maintenance services are expected to be required more often in the future. For this reason, a low-cost instrumentation able to characterize the cells of a battery pack is needed. Several works use low-cost programmable units as Li-ion cell tester, but they are generally based on proprietary-software running on a personal computer. This work introduces an open-source software architecture based on Python language to control common low-cost commercial laboratory instruments. The Python software application is executed on a Raspberry Pi board, which represents the control block of the hardware architecture, instead of a personal computer. The good results obtained during the validation process demonstrate that the proposed cell station tester features measurement accuracy and precision suitable for the characterization of Li-ion cells. Finally, as a simple example of application, the state of health of twenty 40 Ah LiFePO4 cells belonging to a battery pack used in an E-scooter was successfully determined.
Open and Flexible Li-ion Battery Tester Based on Python Language and Raspberry Pi
CARLONI, ANDREA;Baronti, Federico;Di Rienzo, Roberto;Roncella, Roberto;Saletti, Roberto
2018-01-01
Abstract
Technology improvements and cost reduction allow electrochemical energy storage systems based on Lithium-ion cells to massively be used in medium-power applications, where the low system cost is the major constraint. Battery pack maintenance services are expected to be required more often in the future. For this reason, a low-cost instrumentation able to characterize the cells of a battery pack is needed. Several works use low-cost programmable units as Li-ion cell tester, but they are generally based on proprietary-software running on a personal computer. This work introduces an open-source software architecture based on Python language to control common low-cost commercial laboratory instruments. The Python software application is executed on a Raspberry Pi board, which represents the control block of the hardware architecture, instead of a personal computer. The good results obtained during the validation process demonstrate that the proposed cell station tester features measurement accuracy and precision suitable for the characterization of Li-ion cells. Finally, as a simple example of application, the state of health of twenty 40 Ah LiFePO4 cells belonging to a battery pack used in an E-scooter was successfully determined.File | Dimensione | Formato | |
---|---|---|---|
electronics-07-00454.pdf
accesso aperto
Tipologia:
Versione finale editoriale
Licenza:
Creative commons
Dimensione
1.81 MB
Formato
Adobe PDF
|
1.81 MB | Adobe PDF | Visualizza/Apri |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.