We consider a class of simple one parameter families of interval maps, and we study how metric (resp. topological) entropy changes as the parameter varies. We show that in many cases the entropy displays a semi-regular behaviour, i.e. it is smooth on an open and dense set. This feature is due to a combinatorial property called matching, which was first observed in the parametric family of α-continued fractions introduced by Nakada and Natsui (2008 Nonlinearity 21 1207–25).

Matching in a family of piecewise affine maps

Carlo Carminati
;
2019

Abstract

We consider a class of simple one parameter families of interval maps, and we study how metric (resp. topological) entropy changes as the parameter varies. We show that in many cases the entropy displays a semi-regular behaviour, i.e. it is smooth on an open and dense set. This feature is due to a combinatorial property called matching, which was first observed in the parametric family of α-continued fractions introduced by Nakada and Natsui (2008 Nonlinearity 21 1207–25).
Bruin, Henk; Carminati, Carlo; Marmi, Stefano; Profeti, Alessandro
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: http://hdl.handle.net/11568/939663
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 8
  • ???jsp.display-item.citation.isi??? 7
social impact