The optimal insulation of a heat conducting body by a thin film of variable thickness can be formulated as a nondifferentiable, nonlocal eigenvalue problem. The discretization and iterative solution for the reliable computation of corresponding eigenfunctions that determine the optimal layer thickness are addressed. Corresponding numerical experiments confirm the theoretical observation that a symmetry breaking occurs for the case of small available insulation masses and provide insight in the geometry of optimal films. An experimental shape optimization indicates that convex bodies with one axis of symmetry have favorable insulation properties.
Numerical solution of a nonlinear eigenvalue problem arising in optimal insulation
Giuseppe Buttazzo
2019-01-01
Abstract
The optimal insulation of a heat conducting body by a thin film of variable thickness can be formulated as a nondifferentiable, nonlocal eigenvalue problem. The discretization and iterative solution for the reliable computation of corresponding eigenfunctions that determine the optimal layer thickness are addressed. Corresponding numerical experiments confirm the theoretical observation that a symmetry breaking occurs for the case of small available insulation masses and provide insight in the geometry of optimal films. An experimental shape optimization indicates that convex bodies with one axis of symmetry have favorable insulation properties.I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.