Hidden tree Markov models allow learning distributions for tree structured data while being interpretable as nondeterministic automata. We provide a concise summary of the main approaches in literature, focusing in particular on the causality assumptions introduced by the choice of a specific tree visit direction. We will then sketch a novel non-parametric generalization of the bottom-up hidden tree Markov model with its interpretation as a nondeterministic tree automaton with infinite states.

Learning Tree Distributions by Hidden Markov Models

Davide Bacciu;CASTELLANA, DANIELE
2018

Abstract

Hidden tree Markov models allow learning distributions for tree structured data while being interpretable as nondeterministic automata. We provide a concise summary of the main approaches in literature, focusing in particular on the causality assumptions introduced by the choice of a specific tree visit direction. We will then sketch a novel non-parametric generalization of the bottom-up hidden tree Markov model with its interpretation as a nondeterministic tree automaton with infinite states.
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: http://hdl.handle.net/11568/939949
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus ND
  • ???jsp.display-item.citation.isi??? ND
social impact