Protein-polymer conjugates are used to treat several diseases. PEGylation, i.e. the modification with poly(ethylene glycol) (PEG) is the currently used strategy. However, due to its non-biodegradability, the design of effective and degradable conjugates is of both academic and industry potential. We present the preparation and studies of the activity and stability of novel biodegradable myoglobin-polyphosphoester conjugates. Poly(ethyl ethylene phosphate) (PEEP) is a water-soluble polyphosphoester, which had been reported to be biocompatible and biodegradable. PEEP is a promising candidate as a degradable substitute for the “gold standard” PEG, which can cause long-term effects, as it is not degradable. PEEPylated conjugates with a variable degree of polymer grafting were synthesized, characterized (with online triple detection size exclusion chromatography, mass spectrometry, and gel electrophoresis), and compared with PEGylated analogs. We highlight differences in how the structure, the number, and the length of the polymer influence the properties of the conjugates. Overall, the analyses conducted (including activity assay, calorimetry, and fluorimetry measurements) show that the covalent attachment of the polymer does not irrevocably affect the protein's features under physiological conditions, suggesting the potential of this new class of polymers for the design of a new generation of fully degradable conjugates.

PPEylation of proteins: Synthesis, activity, and stability of myoglobin-polyphosphoester conjugates

Pelosi Chiara
Primo
;
Duce Celia
Secondo
;
Tiné Maria Rosaria
Penultimo
;
2018-01-01

Abstract

Protein-polymer conjugates are used to treat several diseases. PEGylation, i.e. the modification with poly(ethylene glycol) (PEG) is the currently used strategy. However, due to its non-biodegradability, the design of effective and degradable conjugates is of both academic and industry potential. We present the preparation and studies of the activity and stability of novel biodegradable myoglobin-polyphosphoester conjugates. Poly(ethyl ethylene phosphate) (PEEP) is a water-soluble polyphosphoester, which had been reported to be biocompatible and biodegradable. PEEP is a promising candidate as a degradable substitute for the “gold standard” PEG, which can cause long-term effects, as it is not degradable. PEEPylated conjugates with a variable degree of polymer grafting were synthesized, characterized (with online triple detection size exclusion chromatography, mass spectrometry, and gel electrophoresis), and compared with PEGylated analogs. We highlight differences in how the structure, the number, and the length of the polymer influence the properties of the conjugates. Overall, the analyses conducted (including activity assay, calorimetry, and fluorimetry measurements) show that the covalent attachment of the polymer does not irrevocably affect the protein's features under physiological conditions, suggesting the potential of this new class of polymers for the design of a new generation of fully degradable conjugates.
2018
Pelosi, Chiara; Duce, Celia; Russo, Daniela; Tine', MARIA ROSARIA; Wurm Frederik, R.
File in questo prodotto:
File Dimensione Formato  
post print_PPEylation of proteins synthesis, activity, and stability of myoglobinpolyphosphoesters.pdf

Open Access dal 01/12/2020

Tipologia: Documento in Post-print
Licenza: Creative commons
Dimensione 12.6 MB
Formato Adobe PDF
12.6 MB Adobe PDF Visualizza/Apri
PPEylation of proteins Synthesis, activity, and stability of myoglobinpolyphosphoester.pdf

solo utenti autorizzati

Tipologia: Versione finale editoriale
Licenza: NON PUBBLICO - Accesso privato/ristretto
Dimensione 1.38 MB
Formato Adobe PDF
1.38 MB Adobe PDF   Visualizza/Apri   Richiedi una copia

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11568/946047
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 20
  • ???jsp.display-item.citation.isi??? 19
social impact