We prove that if G is a group definable in a saturated o-minimal structure, then G has no infinite descending chain of type-definable subgroups of bounded index. Equivalently, G has a smallest (necessarily normal) type-definable subgroup G 00 of bounded index and G/G 00 equipped with the “logic topology” is a compact Lie group. These results give partial answers to some conjectures of the fourth author.
A descending chain condition for groups definable in o-minimal structures
BERARDUCCI, ALESSANDRO;
2005-01-01
Abstract
We prove that if G is a group definable in a saturated o-minimal structure, then G has no infinite descending chain of type-definable subgroups of bounded index. Equivalently, G has a smallest (necessarily normal) type-definable subgroup G 00 of bounded index and G/G 00 equipped with the “logic topology” is a compact Lie group. These results give partial answers to some conjectures of the fourth author.File in questo prodotto:
Non ci sono file associati a questo prodotto.
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.