We study the dispersive properties of the linear Schr¨odinger equation with a timedependent potential V (t, x). We show that an appropriate integrability condition in space and time on V , i.e. the boundedness of a suitable L^r L^s x norm, is sufficient to prove the full set of Strichartz estimates. We also construct several counterexamples which show that our assumptions are optimal, both for local and for global Strichartz estimates, in the class of large unsigned potentials V ∈ L^rL^s.

Some remarks on the Schroedinger equation with a potential in L^r_tL^s_x

VISCIGLIA, NICOLA
2005-01-01

Abstract

We study the dispersive properties of the linear Schr¨odinger equation with a timedependent potential V (t, x). We show that an appropriate integrability condition in space and time on V , i.e. the boundedness of a suitable L^r L^s x norm, is sufficient to prove the full set of Strichartz estimates. We also construct several counterexamples which show that our assumptions are optimal, both for local and for global Strichartz estimates, in the class of large unsigned potentials V ∈ L^rL^s.
2005
D'Ancona, P; Pierfelice, V; Visciglia, Nicola
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11568/95548
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 21
  • ???jsp.display-item.citation.isi??? 20
social impact