We present a novel framework for the fluid dynamics analysis of healthy subjects and patients affected by ascending thoracic aorta aneurysm (aTAA). Our aim is to obtain indications about the effect of a bulge on the hemodynamic environment at different enlargements. Three-dimensional (3D) surface models defined from healthy subjects and patients with aTAA, selected for surgical repair, were generated. A representative shape model for both healthy and pathological groups has been identified. A morphing technique based on radial basis functions (RBF) was applied to mold the shape relative to healthy patient into the representative shape of aTAA dataset to enable the parametric simulation of the aTAA formation. Computational fluid dynamics (CFD) simulations were performed by means of a finite volume solver using the mean boundary conditions obtained from three-dimensional (PC-MRI) acquisition. Blood flow helicity and flow descriptors were assessed for all the investigated models. The feasibility of the proposed integrated approach pertaining the coupling between an RBF morphing technique and CFD simulation for aTAA was demonstrated. Significant hemodynamic changes appear at the 60% of the bulge progression. An impingement of the flow toward the bulge was observed by analyzing the normalized flow eccentricity (NFE) index.

Computational Fluid Dynamic Study for aTAA Hemodynamics: An Integrated Image-Based and Radial Basis Functions Mesh Morphing Approach

Vignali, Emanuele
Secondo
Investigation
;
Landini, Luigi
Conceptualization
;
Positano, Vincenzo
Penultimo
Methodology
;
2018

Abstract

We present a novel framework for the fluid dynamics analysis of healthy subjects and patients affected by ascending thoracic aorta aneurysm (aTAA). Our aim is to obtain indications about the effect of a bulge on the hemodynamic environment at different enlargements. Three-dimensional (3D) surface models defined from healthy subjects and patients with aTAA, selected for surgical repair, were generated. A representative shape model for both healthy and pathological groups has been identified. A morphing technique based on radial basis functions (RBF) was applied to mold the shape relative to healthy patient into the representative shape of aTAA dataset to enable the parametric simulation of the aTAA formation. Computational fluid dynamics (CFD) simulations were performed by means of a finite volume solver using the mean boundary conditions obtained from three-dimensional (PC-MRI) acquisition. Blood flow helicity and flow descriptors were assessed for all the investigated models. The feasibility of the proposed integrated approach pertaining the coupling between an RBF morphing technique and CFD simulation for aTAA was demonstrated. Significant hemodynamic changes appear at the 60% of the bulge progression. An impingement of the flow toward the bulge was observed by analyzing the normalized flow eccentricity (NFE) index.
Capellini, Katia; Vignali, Emanuele; Costa, Emiliano; Gasparotti, Emanuele; Biancolini, Marco Evangelos; Landini, Luigi; Positano, Vincenzo; Celi, Simona
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: http://hdl.handle.net/11568/956240
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? 6
  • Scopus 32
  • ???jsp.display-item.citation.isi??? ND
social impact