We study node similarity in labeled networks, using the label sequences found in paths of bounded length q leading to the nodes. (This recalls the q-grams employed in document resemblance, based on the Jaccard distance.) When applied to networks, the challenge is two-fold: the number of q-grams generated from labeled paths grows exponentially with q, and their frequency should be taken into account: this leads to a variation of the Jaccard index known as Bray-Curtis index for multisets. We describe nSimGram, a suite of fast algorithms for node similarity with q-grams, based on a novel blend of color coding, probabilistic counting, sketches, and string algorithms, where the universe of elements to sample is exponential. We provide experimental evidence that our measure is effective and our running times scale to deal with large real-world networks.

Node Similarity with q-Grams for Real-World Labeled Networks

Alessio Conte;Roberto Grossi;Andrea Marino;
2018-01-01

Abstract

We study node similarity in labeled networks, using the label sequences found in paths of bounded length q leading to the nodes. (This recalls the q-grams employed in document resemblance, based on the Jaccard distance.) When applied to networks, the challenge is two-fold: the number of q-grams generated from labeled paths grows exponentially with q, and their frequency should be taken into account: this leads to a variation of the Jaccard index known as Bray-Curtis index for multisets. We describe nSimGram, a suite of fast algorithms for node similarity with q-grams, based on a novel blend of color coding, probabilistic counting, sketches, and string algorithms, where the universe of elements to sample is exponential. We provide experimental evidence that our measure is effective and our running times scale to deal with large real-world networks.
2018
978-1-4503-5552-0
File in questo prodotto:
File Dimensione Formato  
KDD18_paper_1086.pdf

accesso aperto

Tipologia: Documento in Pre-print
Licenza: Tutti i diritti riservati (All rights reserved)
Dimensione 759.25 kB
Formato Adobe PDF
759.25 kB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11568/959925
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 10
  • ???jsp.display-item.citation.isi??? 7
social impact