Synthetic aperture radar interferometry (InSAR) is a powerful and increasingly expanding technique for measuring the topography of a surface, its changes over both short- and long-time scale, and other changes in the detailed characteristics of the surface. We provide a tutorial description of recent results of the research activity at the University of Pisa on multibaseline (MB) InSAR processing. The main focus is on the problem of retrieving both heights and radar reflectivities of natural layover areas by means of a cross-track InSAR (XTI-SAR) system with a uniform linear array (ULA). It is formulated as the problem of detecting and estimating a multicomponent signal corrupted by multiplicative noise–the speckle in the radar imaging jargon–and by additive white Gaussian noise. Application to the InSAR problem of both nonparametric and parametric modern spectral estimation techniques is described. The problem of estimating the number of signal components in the presence of speckle is also addressed. Finally, a brief mention is given to recent research trends on robust methods for nonperfectly calibrated arrays, on processing for non-ULA configurations, and on MB SAR tomography, which is an extension of MB SAR interferometry for the full 3D mapping of semitransparent volume scattering layers. State of the art of other advanced multichannel interferometric techniques is also briefly recalled.

Multibaseline Cross-Track SAR Interferometry: A Signal Processing Perspective

GINI, FULVIO;LOMBARDINI, FABRIZIO
2005-01-01

Abstract

Synthetic aperture radar interferometry (InSAR) is a powerful and increasingly expanding technique for measuring the topography of a surface, its changes over both short- and long-time scale, and other changes in the detailed characteristics of the surface. We provide a tutorial description of recent results of the research activity at the University of Pisa on multibaseline (MB) InSAR processing. The main focus is on the problem of retrieving both heights and radar reflectivities of natural layover areas by means of a cross-track InSAR (XTI-SAR) system with a uniform linear array (ULA). It is formulated as the problem of detecting and estimating a multicomponent signal corrupted by multiplicative noise–the speckle in the radar imaging jargon–and by additive white Gaussian noise. Application to the InSAR problem of both nonparametric and parametric modern spectral estimation techniques is described. The problem of estimating the number of signal components in the presence of speckle is also addressed. Finally, a brief mention is given to recent research trends on robust methods for nonperfectly calibrated arrays, on processing for non-ULA configurations, and on MB SAR tomography, which is an extension of MB SAR interferometry for the full 3D mapping of semitransparent volume scattering layers. State of the art of other advanced multichannel interferometric techniques is also briefly recalled.
2005
Gini, Fulvio; Lombardini, Fabrizio
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11568/96023
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 123
  • ???jsp.display-item.citation.isi??? 90
social impact