We investigate the impact of the gate contact on the threshold voltage stability in p-GaN gate AlGaN/GaN heterojunction field-effect transistors with double pulse measurements on the p-GaN gate devices and device simulations. We find that, under gate stress, in the case of high-leakage Schottky contact, a negative threshold voltage shift results from hole accumulation in the p-GaN region. Conversely, in the case of low-leakage Schottky contact, hole depletion in the p-GaN region gives rise to a positive threshold voltage shift. More generally, we show that an imbalance between the hole tunneling current through the Schottky barrier and the thermionic current across the AlGaN barrier results in a variation of the total charge stored in the p-GaN region, which in turn is responsible for the observed threshold voltage shift. Finally, we present a simplified equivalent circuit model for the p-GaN gate module.

Threshold Voltage Instability in p-GaN Gate AlGaN/GaN HFETs

Iannaccone, Giuseppe
Secondo
;
2018-01-01

Abstract

We investigate the impact of the gate contact on the threshold voltage stability in p-GaN gate AlGaN/GaN heterojunction field-effect transistors with double pulse measurements on the p-GaN gate devices and device simulations. We find that, under gate stress, in the case of high-leakage Schottky contact, a negative threshold voltage shift results from hole accumulation in the p-GaN region. Conversely, in the case of low-leakage Schottky contact, hole depletion in the p-GaN region gives rise to a positive threshold voltage shift. More generally, we show that an imbalance between the hole tunneling current through the Schottky barrier and the thermionic current across the AlGaN barrier results in a variation of the total charge stored in the p-GaN region, which in turn is responsible for the observed threshold voltage shift. Finally, we present a simplified equivalent circuit model for the p-GaN gate module.
2018
Sayadi, Luca; Iannaccone, Giuseppe; Sicre, Sébastien; Häberlen, Oliver; Curatola, Gilberto
File in questo prodotto:
File Dimensione Formato  
Sayadi_TED_2018_Vth_Instabilities.pdf

solo utenti autorizzati

Tipologia: Versione finale editoriale
Licenza: Tutti i diritti riservati (All rights reserved)
Dimensione 1.56 MB
Formato Adobe PDF
1.56 MB Adobe PDF   Visualizza/Apri   Richiedi una copia
Sayadi_TED_2018_Vth_preprint_author_version.pdf

accesso aperto

Tipologia: Documento in Post-print
Licenza: Tutti i diritti riservati (All rights reserved)
Dimensione 2.08 MB
Formato Adobe PDF
2.08 MB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11568/961406
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 200
  • ???jsp.display-item.citation.isi??? 180
social impact