We define and study infinite root stacks of fine and saturated logarithmic schemes, a limit version of the root stacks introduced by Niels Borne and the second author in Adv. Math. (231 (2012) 1327–1363). We show in particular that the infinite root stack determines the logarithmic structure and recovers the Kummer-flat topos of the logarithmic scheme. We also extend the correspondence between parabolic sheaves and quasi-coherent sheaves on root stacks to this new setting.

Infinite root stacks and quasi-coherent sheaves on logarithmic schemes

Talpo, Mattia;
2018-01-01

Abstract

We define and study infinite root stacks of fine and saturated logarithmic schemes, a limit version of the root stacks introduced by Niels Borne and the second author in Adv. Math. (231 (2012) 1327–1363). We show in particular that the infinite root stack determines the logarithmic structure and recovers the Kummer-flat topos of the logarithmic scheme. We also extend the correspondence between parabolic sheaves and quasi-coherent sheaves on root stacks to this new setting.
2018
Talpo, Mattia; Vistoli, Angelo
File in questo prodotto:
File Dimensione Formato  
infinite root stacks revised.pdf

accesso aperto

Tipologia: Documento in Post-print
Licenza: Tutti i diritti riservati (All rights reserved)
Dimensione 809.6 kB
Formato Adobe PDF
809.6 kB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11568/962426
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 21
  • ???jsp.display-item.citation.isi??? 17
social impact