We analyze a multi-sector growth model subject to random shocks affecting the two sector-specific production functions twofold: the evolution of both productivity and factor shares is the result of such exogenous shocks. We determine the optimal dynamics via Euler–Lagrange equations, and show how these dynamics can be described in terms of an iterated function system with probability. We also provide conditions that imply the singularity of the invariant measure associated with the fractal attractor. Numerical examples show how specific parameter configurations might generate distorted copies of the Barnsley’s fern attractor.
Fractal attractors and singular invariant measures in two-sector growth models with random factor shares
Marsiglio S;
2018-01-01
Abstract
We analyze a multi-sector growth model subject to random shocks affecting the two sector-specific production functions twofold: the evolution of both productivity and factor shares is the result of such exogenous shocks. We determine the optimal dynamics via Euler–Lagrange equations, and show how these dynamics can be described in terms of an iterated function system with probability. We also provide conditions that imply the singularity of the invariant measure associated with the fractal attractor. Numerical examples show how specific parameter configurations might generate distorted copies of the Barnsley’s fern attractor.File | Dimensione | Formato | |
---|---|---|---|
LaTorre Marsiglio Mendivil Privileggi 2018.pdf
accesso aperto
Tipologia:
Documento in Post-print
Licenza:
Creative commons
Dimensione
4.23 MB
Formato
Adobe PDF
|
4.23 MB | Adobe PDF | Visualizza/Apri |
Fractal attractors_version of record.pdf
non disponibili
Tipologia:
Versione finale editoriale
Licenza:
NON PUBBLICO - accesso privato/ristretto
Dimensione
2.36 MB
Formato
Adobe PDF
|
2.36 MB | Adobe PDF | Visualizza/Apri Richiedi una copia |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.