We present a generalized version of the Hardy-Sobolev inequality, in which the homogeneous potential |x|^−α is replaced by any potential V belonging to the Lorentz space L^n/α,∞(Rn). We show that the best constant in these inequalities is achieved provided that V ∈ Lnα,d(Rn) where 1 ≤ d < ∞. We also analyze the limit case d = ∞. Finally an application to a non-linear eigenvalues problem with rough potentials is presented

A note about the generalized Hardy-Sobolev inequality with potential in L^{p, d}

VISCIGLIA, NICOLA
2005-01-01

Abstract

We present a generalized version of the Hardy-Sobolev inequality, in which the homogeneous potential |x|^−α is replaced by any potential V belonging to the Lorentz space L^n/α,∞(Rn). We show that the best constant in these inequalities is achieved provided that V ∈ Lnα,d(Rn) where 1 ≤ d < ∞. We also analyze the limit case d = ∞. Finally an application to a non-linear eigenvalues problem with rough potentials is presented
2005
Visciglia, Nicola
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11568/97871
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 15
  • ???jsp.display-item.citation.isi??? 16
social impact