We prove that in a class of non-equiregular sub-Riemannian manifolds corners are not length minimizing. This extends the results of [G.P. Leonardi and R. Monti, Geom. Funct. Anal. 18 (2008) 552-582]. As an application of our main result we complete and simplify the analysis in [R. Monti, Ann. Mat. Pura Appl. (2013)], showing that in a 4-dimensional sub-Riemannian structure suggested by Agrachev and Gauthier all length-minimizing curves are smooth.

Corners in non-equiregular sub-Riemannian manifolds

Le Donne, Enrico;Monti, Roberto;Vittone, Davide
2015-01-01

Abstract

We prove that in a class of non-equiregular sub-Riemannian manifolds corners are not length minimizing. This extends the results of [G.P. Leonardi and R. Monti, Geom. Funct. Anal. 18 (2008) 552-582]. As an application of our main result we complete and simplify the analysis in [R. Monti, Ann. Mat. Pura Appl. (2013)], showing that in a 4-dimensional sub-Riemannian structure suggested by Agrachev and Gauthier all length-minimizing curves are smooth.
2015
Le Donne, Enrico; Leonardi, Gian Paolo; Monti, Roberto; Vittone, Davide
File in questo prodotto:
File Dimensione Formato  
cocv140041.pdf

accesso aperto

Tipologia: Versione finale editoriale
Licenza: Tutti i diritti riservati (All rights reserved)
Dimensione 192 kB
Formato Adobe PDF
192 kB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11568/981955
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 5
  • ???jsp.display-item.citation.isi??? 6
social impact