We prove that in a class of non-equiregular sub-Riemannian manifolds corners are not length minimizing. This extends the results of [G.P. Leonardi and R. Monti, Geom. Funct. Anal. 18 (2008) 552-582]. As an application of our main result we complete and simplify the analysis in [R. Monti, Ann. Mat. Pura Appl. (2013)], showing that in a 4-dimensional sub-Riemannian structure suggested by Agrachev and Gauthier all length-minimizing curves are smooth.
Corners in non-equiregular sub-Riemannian manifolds
Le Donne, Enrico;Monti, Roberto;Vittone, Davide
2015-01-01
Abstract
We prove that in a class of non-equiregular sub-Riemannian manifolds corners are not length minimizing. This extends the results of [G.P. Leonardi and R. Monti, Geom. Funct. Anal. 18 (2008) 552-582]. As an application of our main result we complete and simplify the analysis in [R. Monti, Ann. Mat. Pura Appl. (2013)], showing that in a 4-dimensional sub-Riemannian structure suggested by Agrachev and Gauthier all length-minimizing curves are smooth.File in questo prodotto:
File | Dimensione | Formato | |
---|---|---|---|
cocv140041.pdf
accesso aperto
Tipologia:
Versione finale editoriale
Licenza:
Tutti i diritti riservati (All rights reserved)
Dimensione
192 kB
Formato
Adobe PDF
|
192 kB | Adobe PDF | Visualizza/Apri |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.