We consider low-energy configurations for the Heitmann–Radin sticky discs functional, in the limit of diverging number of discs. More precisely, we renormalize the Heitmann–Radin potential by subtracting the minimal energy per particle, i.e. the so-called kissing number. For configurations whose energy scales like the perimeter, we prove a compactness result which shows the emergence of polycrystalline structures: The empirical measure converges to a set of finite perimeter, while a microscopic variable, representing the orientation of the underlying lattice, converges to a locally constant function. Whenever the limit configuration is a single crystal, i.e. it has constant orientation, we show that the Γ-limit is the anisotropic perimeter, corresponding to the Finsler metric determined by the orientation of the single crystal.

Γ -Convergence of the Heitmann–Radin Sticky Disc Energy to the Crystalline Perimeter

De Luca, L.;Novaga, M.;
2019-01-01

Abstract

We consider low-energy configurations for the Heitmann–Radin sticky discs functional, in the limit of diverging number of discs. More precisely, we renormalize the Heitmann–Radin potential by subtracting the minimal energy per particle, i.e. the so-called kissing number. For configurations whose energy scales like the perimeter, we prove a compactness result which shows the emergence of polycrystalline structures: The empirical measure converges to a set of finite perimeter, while a microscopic variable, representing the orientation of the underlying lattice, converges to a locally constant function. Whenever the limit configuration is a single crystal, i.e. it has constant orientation, we show that the Γ-limit is the anisotropic perimeter, corresponding to the Finsler metric determined by the orientation of the single crystal.
2019
De Luca, L.; Novaga, M.; Ponsiglione, M.
File in questo prodotto:
File Dimensione Formato  
DelNovPons_revised.pdf

accesso aperto

Tipologia: Documento in Post-print
Licenza: Tutti i diritti riservati (All rights reserved)
Dimensione 438.4 kB
Formato Adobe PDF
438.4 kB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11568/982652
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 8
  • ???jsp.display-item.citation.isi??? 7
social impact