In this work, we report a study of two thermotropic liquid crystalline samples showing a not common mesophase behavior. The samples, namely a di-benzyloxy biphenyl derivative labelled 9/2 RS/RS, and a bimesogenic liquid crystal labelled L1, show a direct transition between two isotropic phases followed, at lower temperatures, by the optically isotropic, 3D structured, cubic phase. These systems have been investigated by means of 1H NMR diffusometry and 1H NMR relaxometry in order to characterize their isotropic–isotropic’–cubic mesophase behavior, mainly on the dynamic point of view. In particular, the temperature trend of the self-diffusion coefficients measured for both samples allowed us to significantly distinguish between the two isotropic phases, while the temperature dependence of the 1H spin-lattice relaxation time (T1) did not show significant discontinuities at the isotropic–isotropic’ phase transition. A preliminary analysis of the frequency-dependence of 1H T1 at different temperatures gives information about the main motional processes active in the isotropic mesophases.
Study of liquid crystals showing two isotropic phases by 1 H NMR diffusometry and 1 H NMR relaxometry
Mario Cifelli;Valentina Domenici
Ultimo
Supervision
2019-01-01
Abstract
In this work, we report a study of two thermotropic liquid crystalline samples showing a not common mesophase behavior. The samples, namely a di-benzyloxy biphenyl derivative labelled 9/2 RS/RS, and a bimesogenic liquid crystal labelled L1, show a direct transition between two isotropic phases followed, at lower temperatures, by the optically isotropic, 3D structured, cubic phase. These systems have been investigated by means of 1H NMR diffusometry and 1H NMR relaxometry in order to characterize their isotropic–isotropic’–cubic mesophase behavior, mainly on the dynamic point of view. In particular, the temperature trend of the self-diffusion coefficients measured for both samples allowed us to significantly distinguish between the two isotropic phases, while the temperature dependence of the 1H spin-lattice relaxation time (T1) did not show significant discontinuities at the isotropic–isotropic’ phase transition. A preliminary analysis of the frequency-dependence of 1H T1 at different temperatures gives information about the main motional processes active in the isotropic mesophases.I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.