One of the main challenges of the interface-tissue engineering is the regeneration of diseased or damaged interfacial native tissues that are heterogeneous both in composition and in structure. In order to achieve this objective, innovative fabrication techniques have to be investigated. This work describes the design, fabrication, and validation of a novel mixing system to be integrated into a double-extruder bioprinter, based on an ultrasonic probe included into a mixing chamber. To validate the quality and the influence of mixing time, different nanohydroxyapatite–gelatin samples were printed. Mechanical characterization, micro-computed tomography, and thermogravimetric analysis were carried out. Samples obtained from three-dimensional bioprinting using the mixing chamber were compared to samples obtained by deposition of the same final solution obtained by manually operated ultrasound probe, showing no statistical differences. Results obtained from samples characterization allow to consider the proposed mixing system as a promising tool for the fabrication of graduated structures which are increasingly being used in interface-tissue engineering.
Ultrasonic mixing chamber as an effective tool for the biofabrication of fully graded scaffolds for interface tissue engineering
Chiesa I.Primo
;Fortunato G. M.Secondo
;Lapomarda A.;De Acutis A.;Bernazzani L.;Tine M. R.;De Maria C.Penultimo
;Vozzi G.
Ultimo
2019-01-01
Abstract
One of the main challenges of the interface-tissue engineering is the regeneration of diseased or damaged interfacial native tissues that are heterogeneous both in composition and in structure. In order to achieve this objective, innovative fabrication techniques have to be investigated. This work describes the design, fabrication, and validation of a novel mixing system to be integrated into a double-extruder bioprinter, based on an ultrasonic probe included into a mixing chamber. To validate the quality and the influence of mixing time, different nanohydroxyapatite–gelatin samples were printed. Mechanical characterization, micro-computed tomography, and thermogravimetric analysis were carried out. Samples obtained from three-dimensional bioprinting using the mixing chamber were compared to samples obtained by deposition of the same final solution obtained by manually operated ultrasound probe, showing no statistical differences. Results obtained from samples characterization allow to consider the proposed mixing system as a promising tool for the fabrication of graduated structures which are increasingly being used in interface-tissue engineering.File | Dimensione | Formato | |
---|---|---|---|
0391398819852960.pdf
non disponibili
Descrizione: Articolo principale
Tipologia:
Versione finale editoriale
Licenza:
NON PUBBLICO - accesso privato/ristretto
Dimensione
632.13 kB
Formato
Adobe PDF
|
632.13 kB | Adobe PDF | Visualizza/Apri Richiedi una copia |
2019-03-23 - articolo finale.pdf
accesso aperto
Descrizione: Articolo principale
Tipologia:
Documento in Post-print
Licenza:
Tutti i diritti riservati (All rights reserved)
Dimensione
6.18 MB
Formato
Adobe PDF
|
6.18 MB | Adobe PDF | Visualizza/Apri |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.