This paper shows the results of the comparison between Multi-temporal Synthetic Aperture Radar (MTInSAR) products derived from different sensors (C-band ERS 1/2, Envisat, Sentinel-1 and X-band COSMO-SkyMed) and geotechnical data to investigate the driving factors of subsidence which affect a freight terminal located along the a coastal plain of Tuscany (central Italy). MTInSAR data have been acquired in a very long period, between 1992 and 2018 and were analyzed in terms of subsidence rates and deformation time series at building scale. The obtained results show that the oldest buildings are still affected by a deformation rate close to −5 mm/yr, whereas recent buildings register rates around −40 mm/yr. Time series of deformation suggest that the deformation rates decrease over time following time-dependent trend that approximates the typical consolidation curve for compressible soils. The geotechnical and stratigraphical analysis of the subsurface data (boreholes, cone penetration tests and dilatometer tests) highlights the presence of a 15 m thick layer formed of clay characterized by poor geotechnical characteristics. The comparison among InSAR data, subsurface geological framework and geotechnical reconstruction suggests a possible evaluation of the timing of the primary and secondary consolidation processes.

Evaluation of subsidence induced by long-lasting buildings load using InSAR technique and geotechnical data: The case study of a Freight Terminal (Tuscany, Italy)

Ciampalini, Andrea
;
Giannecchini, Roberto;
2019-01-01

Abstract

This paper shows the results of the comparison between Multi-temporal Synthetic Aperture Radar (MTInSAR) products derived from different sensors (C-band ERS 1/2, Envisat, Sentinel-1 and X-band COSMO-SkyMed) and geotechnical data to investigate the driving factors of subsidence which affect a freight terminal located along the a coastal plain of Tuscany (central Italy). MTInSAR data have been acquired in a very long period, between 1992 and 2018 and were analyzed in terms of subsidence rates and deformation time series at building scale. The obtained results show that the oldest buildings are still affected by a deformation rate close to −5 mm/yr, whereas recent buildings register rates around −40 mm/yr. Time series of deformation suggest that the deformation rates decrease over time following time-dependent trend that approximates the typical consolidation curve for compressible soils. The geotechnical and stratigraphical analysis of the subsurface data (boreholes, cone penetration tests and dilatometer tests) highlights the presence of a 15 m thick layer formed of clay characterized by poor geotechnical characteristics. The comparison among InSAR data, subsurface geological framework and geotechnical reconstruction suggests a possible evaluation of the timing of the primary and secondary consolidation processes.
2019
Ciampalini, Andrea; Solari, Lorenzo; Giannecchini, Roberto; Galanti, Yuri; Moretti, Sandro
File in questo prodotto:
File Dimensione Formato  
1-s2.0-S0303243419301722-main.pdf

accesso aperto

Tipologia: Versione finale editoriale
Licenza: Creative commons
Dimensione 6.79 MB
Formato Adobe PDF
6.79 MB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11568/1029885
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 41
  • ???jsp.display-item.citation.isi??? 38
social impact