Tannery wastewater presents high concentrations of organic load and pollutant recalcitrant molecules (e.g. tannins), which reduce the efficiency of biological treatment processes. Recent studies showed that several fungal species and strains are effective in the degradation of tannins. However, high bacterial load can negatively affect fungal growth, reducing system stability and degradation performances. The aim of the present study was to evaluate the effects of the introduction of bacterivorous grazers (ciliates and/or rotifers) in batch scale experiments using fungi to remove Tara tannin, i.e. to check the potential synergistic effect between fungi and bacterivorous grazers in the degradation of recalcitrant compounds. In this context, the ciliated grazers Paramecium calkinsi, Tetrahymena sp., Pseudovorticella sp., and the rotifer Lecane inermis, preliminary selected according to their ability to grow in a solution prepared with Tara tannin, were separately tested. Activated sludge, including a complex mixture of native grazers, was used as experimental control. The following parameters were monitored: bacterial load, number of grazers/mL and Soluble Chemical Oxygen Demand (SCOD). Colony Forming Unit (CFU)/grazers ratio was also calculated. Particular attention was paid to: i) bacterial load reduction and ii) enhancement of recalcitrant compounds degradation, and we observed that in all experimental conditions where grazers occurred bacterial load was significantly reduced and the system achieved a higher SCOD removal in a shorter time. Our findings provide useful insights for the stabilization of fungal-based systems in non-sterile conditions.

Role of bacterivorous organisms on fungal-based systems for natural tannin degradation

Modeo L.
Membro del Collaboration Group
;
Petroni G.
Ultimo
Supervision
2020-01-01

Abstract

Tannery wastewater presents high concentrations of organic load and pollutant recalcitrant molecules (e.g. tannins), which reduce the efficiency of biological treatment processes. Recent studies showed that several fungal species and strains are effective in the degradation of tannins. However, high bacterial load can negatively affect fungal growth, reducing system stability and degradation performances. The aim of the present study was to evaluate the effects of the introduction of bacterivorous grazers (ciliates and/or rotifers) in batch scale experiments using fungi to remove Tara tannin, i.e. to check the potential synergistic effect between fungi and bacterivorous grazers in the degradation of recalcitrant compounds. In this context, the ciliated grazers Paramecium calkinsi, Tetrahymena sp., Pseudovorticella sp., and the rotifer Lecane inermis, preliminary selected according to their ability to grow in a solution prepared with Tara tannin, were separately tested. Activated sludge, including a complex mixture of native grazers, was used as experimental control. The following parameters were monitored: bacterial load, number of grazers/mL and Soluble Chemical Oxygen Demand (SCOD). Colony Forming Unit (CFU)/grazers ratio was also calculated. Particular attention was paid to: i) bacterial load reduction and ii) enhancement of recalcitrant compounds degradation, and we observed that in all experimental conditions where grazers occurred bacterial load was significantly reduced and the system achieved a higher SCOD removal in a shorter time. Our findings provide useful insights for the stabilization of fungal-based systems in non-sterile conditions.
2020
Sigona, C.; Bardi, A.; Modeo, L.; Mori, G.; Potekhin, A.; Verni, F.; Munz, G.; Petroni, G.
File in questo prodotto:
File Dimensione Formato  
Sigona et al. 2020.pdf

accesso aperto

Descrizione: Articolo principale
Tipologia: Versione finale editoriale
Licenza: Creative commons
Dimensione 1.4 MB
Formato Adobe PDF
1.4 MB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11568/1039212
Citazioni
  • ???jsp.display-item.citation.pmc??? 0
  • Scopus 3
  • ???jsp.display-item.citation.isi??? 2
social impact