Tetrapyrazinoporphyrazine (TPysPz) ligands and metal complexes find, generally, application as electronic materials and catalysts. Considering the limited application of Titanium (Ti), we prepared and characterized a family of ligands and Ti-based complexes of tetrakis-2,3-[5,6-di-R8-pyrazino]porphyrazine (R = H, 2-Py, Ph). UV/Vis measurements in different solvents confirm molecular aggregation, which results more pronounced in the presence of 2-pyridil and phenyl substituents on the macrocycle edge. Because of low solubility, solid state NMR was applied for structure characterization. Additional IR and MALDI-TOF were carried out to complete the characterization. Cyclic voltammetry in DMSO/Bu4NBF4 0.1 m unveiled that our Ti complexes can take part in up to five redox events. The first two quasi-reversible reductions involve Ti(IV), whereas the further to or three occur at the expense of the TPysPz macrocycle. To test the applicability of our compounds as catalytic materials, we performed a preliminary cyclic voltammetry investigation in the solid-state, which showed typical peaks of hydrogen redox reactions.
Titanium-Based Tetrakis-2,3-[5,6-di(Substituted)pyrazino]porphyrazine: Synthesis and Characterization
Nardelli F.;Martini F.;Geppi M.;
2020-01-01
Abstract
Tetrapyrazinoporphyrazine (TPysPz) ligands and metal complexes find, generally, application as electronic materials and catalysts. Considering the limited application of Titanium (Ti), we prepared and characterized a family of ligands and Ti-based complexes of tetrakis-2,3-[5,6-di-R8-pyrazino]porphyrazine (R = H, 2-Py, Ph). UV/Vis measurements in different solvents confirm molecular aggregation, which results more pronounced in the presence of 2-pyridil and phenyl substituents on the macrocycle edge. Because of low solubility, solid state NMR was applied for structure characterization. Additional IR and MALDI-TOF were carried out to complete the characterization. Cyclic voltammetry in DMSO/Bu4NBF4 0.1 m unveiled that our Ti complexes can take part in up to five redox events. The first two quasi-reversible reductions involve Ti(IV), whereas the further to or three occur at the expense of the TPysPz macrocycle. To test the applicability of our compounds as catalytic materials, we performed a preliminary cyclic voltammetry investigation in the solid-state, which showed typical peaks of hydrogen redox reactions.File | Dimensione | Formato | |
---|---|---|---|
Eur J Inorg Chem - 2020 - Renzi - Titanium‐Based Tetrakis‐2 3‐ 5 6‐di Substituted pyrazino porphyrazine Synthesis and.pdf
non disponibili
Tipologia:
Versione finale editoriale
Licenza:
NON PUBBLICO - accesso privato/ristretto
Dimensione
1.1 MB
Formato
Adobe PDF
|
1.1 MB | Adobe PDF | Visualizza/Apri Richiedi una copia |
Preprint Renzi et al.pdf
accesso aperto
Tipologia:
Documento in Pre-print
Licenza:
Tutti i diritti riservati (All rights reserved)
Dimensione
10.48 MB
Formato
Adobe PDF
|
10.48 MB | Adobe PDF | Visualizza/Apri |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.