Tetrapyrazinoporphyrazine (TPysPz) ligands and metal complexes find, generally, application as electronic materials and catalysts. Considering the limited application of Titanium (Ti), we prepared and characterized a family of ligands and Ti-based complexes of tetrakis-2,3-[5,6-di-R8-pyrazino]porphyrazine (R = H, 2-Py, Ph). UV/Vis measurements in different solvents confirm molecular aggregation, which results more pronounced in the presence of 2-pyridil and phenyl substituents on the macrocycle edge. Because of low solubility, solid state NMR was applied for structure characterization. Additional IR and MALDI-TOF were carried out to complete the characterization. Cyclic voltammetry in DMSO/Bu4NBF4 0.1 m unveiled that our Ti complexes can take part in up to five redox events. The first two quasi-reversible reductions involve Ti(IV), whereas the further to or three occur at the expense of the TPysPz macrocycle. To test the applicability of our compounds as catalytic materials, we performed a preliminary cyclic voltammetry investigation in the solid-state, which showed typical peaks of hydrogen redox reactions.

Titanium-Based Tetrakis-2,3-[5,6-di(Substituted)pyrazino]porphyrazine: Synthesis and Characterization

Nardelli F.;Martini F.;Geppi M.;
2020-01-01

Abstract

Tetrapyrazinoporphyrazine (TPysPz) ligands and metal complexes find, generally, application as electronic materials and catalysts. Considering the limited application of Titanium (Ti), we prepared and characterized a family of ligands and Ti-based complexes of tetrakis-2,3-[5,6-di-R8-pyrazino]porphyrazine (R = H, 2-Py, Ph). UV/Vis measurements in different solvents confirm molecular aggregation, which results more pronounced in the presence of 2-pyridil and phenyl substituents on the macrocycle edge. Because of low solubility, solid state NMR was applied for structure characterization. Additional IR and MALDI-TOF were carried out to complete the characterization. Cyclic voltammetry in DMSO/Bu4NBF4 0.1 m unveiled that our Ti complexes can take part in up to five redox events. The first two quasi-reversible reductions involve Ti(IV), whereas the further to or three occur at the expense of the TPysPz macrocycle. To test the applicability of our compounds as catalytic materials, we performed a preliminary cyclic voltammetry investigation in the solid-state, which showed typical peaks of hydrogen redox reactions.
2020
Renzi, P.; Mazzapioda, L.; Nardelli, F.; Martini, F.; Geppi, M.; Mancone, C.; Assunta Navarra, M.; D'Acunzo, F.; Gentili, P.
File in questo prodotto:
File Dimensione Formato  
Eur J Inorg Chem - 2020 - Renzi - Titanium‐Based Tetrakis‐2 3‐ 5 6‐di Substituted pyrazino porphyrazine Synthesis and.pdf

non disponibili

Tipologia: Versione finale editoriale
Licenza: NON PUBBLICO - accesso privato/ristretto
Dimensione 1.1 MB
Formato Adobe PDF
1.1 MB Adobe PDF   Visualizza/Apri   Richiedi una copia
Preprint Renzi et al.pdf

accesso aperto

Tipologia: Documento in Pre-print
Licenza: Tutti i diritti riservati (All rights reserved)
Dimensione 10.48 MB
Formato Adobe PDF
10.48 MB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11568/1051991
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 3
  • ???jsp.display-item.citation.isi??? 3
social impact