The 6TiSCH architecture is expected to play a significant role to enable the Internet of Things paradigm also in industrial environments, where reliability and timeliness are of paramount importance to support critical applications. Many research activities have focused on the Scheduling Function (SF) used for managing the allocation of communication resources in order to guarantee the application requirements. Two different approaches have mainly attracted the interest of researchers, namely distributed and autonomous scheduling. Although many different (both distributed and autonomous) SFs have been proposed and analyzed, a direct comparison of these two approaches is still missing. In this work, we compare some different SFs, using different behaviors in allocating resources, and investigate the pros and cons of using distributed or autonomous scheduling in four different scenarios, by means of both simulations and measurements in a real testbed. Based on our results, we also provide a number of guidelines to select the most appropriate SF, and its configuration parameters, depending on the specific use case.

Analysis of Distributed and Autonomous Scheduling Functions for 6TiSCH Networks

Righetti, F;Vallati, C;Anastasi, G
2020-01-01

Abstract

The 6TiSCH architecture is expected to play a significant role to enable the Internet of Things paradigm also in industrial environments, where reliability and timeliness are of paramount importance to support critical applications. Many research activities have focused on the Scheduling Function (SF) used for managing the allocation of communication resources in order to guarantee the application requirements. Two different approaches have mainly attracted the interest of researchers, namely distributed and autonomous scheduling. Although many different (both distributed and autonomous) SFs have been proposed and analyzed, a direct comparison of these two approaches is still missing. In this work, we compare some different SFs, using different behaviors in allocating resources, and investigate the pros and cons of using distributed or autonomous scheduling in four different scenarios, by means of both simulations and measurements in a real testbed. Based on our results, we also provide a number of guidelines to select the most appropriate SF, and its configuration parameters, depending on the specific use case.
2020
Righetti, F; Vallati, C; Das, Sk; Anastasi, G
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11568/1055559
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 13
  • ???jsp.display-item.citation.isi??? 10
social impact