It is well known that physiological systems show complex and nonlinear behaviours. In spite of that, functional near-infrared spectroscopy (fNIRS) is usually analyzed in the time and frequency domains with the assumption that metabolic activity is generated from a linear system. To leverage the full information provided by fNIRS signals, in this study we investigate topological entropy in fNIRS series collected from 10 healthy subjects during mental mental arithmetic task. While sample entropy and fuzzy entropy were used to estimate time series irregularity, distribution entropy was used to estimate time series complexity. Our findings show that entropy estimates may provide complementary characterization of fNIRS dynamics with respect to reference time domain measurements. This finding paves the way to further investigate functional activation in fNIRS in different case studies using nonlinear and complexity system theory.

Complexity Analysis on Functional-Near Infrared Spectroscopy Time Series: A Preliminary Study on Mental Arithmetic

Nardelli M.;Catrambone V.;Valenza G.
2020-01-01

Abstract

It is well known that physiological systems show complex and nonlinear behaviours. In spite of that, functional near-infrared spectroscopy (fNIRS) is usually analyzed in the time and frequency domains with the assumption that metabolic activity is generated from a linear system. To leverage the full information provided by fNIRS signals, in this study we investigate topological entropy in fNIRS series collected from 10 healthy subjects during mental mental arithmetic task. While sample entropy and fuzzy entropy were used to estimate time series irregularity, distribution entropy was used to estimate time series complexity. Our findings show that entropy estimates may provide complementary characterization of fNIRS dynamics with respect to reference time domain measurements. This finding paves the way to further investigate functional activation in fNIRS in different case studies using nonlinear and complexity system theory.
2020
978-1-7281-1990-8
File in questo prodotto:
File Dimensione Formato  
2020_Ghouse_etal_EMBC_fNIRScomplexity.pdf

accesso aperto

Tipologia: Documento in Post-print
Licenza: Tutti i diritti riservati (All rights reserved)
Dimensione 1.16 MB
Formato Adobe PDF
1.16 MB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11568/1066906
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 0
  • ???jsp.display-item.citation.isi??? 0
social impact