This paper presents design considerations for an integrated wireless power transfer (WPT) and power line communication (PLC) system (e.g. WPT-PLC). The main goal is to enable wireless charging of mobile electronic products, along with high data rate communication over the shared wireless inductive resonant channel. Starting from a couple of resonant coils, characterized by the S-parameters matrix, the design of an impedance matching network and decoupling filters is carried out to better decouple power and data signals. A pulse-driven class-E power amplifier (PA) and a rectifier are first conceived based on the measured S-parameters and load-pull characterizations. Second, a sine-driven class-E power link, operating at 6.78 MHz, is proposed to reduce the total harmonic distortion of the integrated WPT-PLC system. These design steps aim to ensure high-power efficiency and low harmonic distortion of the class-E PA in order to mildly affect the channel capacity of the PLC. The harmonic interferences of the pulse-driven and sine-driven class-E power links are compared and discussed, together with the electromagnetic compatibility levels, the channel capacity, and the noise disturbances of the PLC channel in order to guarantee an optimized power and data transfer in the integrated WPT-PLC system.
Harmonic distortion considerations for an integrated WPT-PLC system
Barmada S.;Tucci M.;Raugi M.
2020-01-01
Abstract
This paper presents design considerations for an integrated wireless power transfer (WPT) and power line communication (PLC) system (e.g. WPT-PLC). The main goal is to enable wireless charging of mobile electronic products, along with high data rate communication over the shared wireless inductive resonant channel. Starting from a couple of resonant coils, characterized by the S-parameters matrix, the design of an impedance matching network and decoupling filters is carried out to better decouple power and data signals. A pulse-driven class-E power amplifier (PA) and a rectifier are first conceived based on the measured S-parameters and load-pull characterizations. Second, a sine-driven class-E power link, operating at 6.78 MHz, is proposed to reduce the total harmonic distortion of the integrated WPT-PLC system. These design steps aim to ensure high-power efficiency and low harmonic distortion of the class-E PA in order to mildly affect the channel capacity of the PLC. The harmonic interferences of the pulse-driven and sine-driven class-E power links are compared and discussed, together with the electromagnetic compatibility levels, the channel capacity, and the noise disturbances of the PLC channel in order to guarantee an optimized power and data transfer in the integrated WPT-PLC system.I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.