A measurement of the mass of the Higgs boson in the diphoton decay channel is presented. This analysis is based on 35.9fb−1 of proton-proton collision data collected during the 2016 LHC running period, with the CMS detector at a centre-of-mass energy of 13 TeV. A refined detector calibration and new analysis techniques have been used to improve the precision of this measurement. The Higgs boson mass is measured to be mH=125.78±0.26GeV. This is combined with a measurement of mH already performed in the H→ZZ→4ℓ decay channel using the same data set, giving mH=125.46±0.16GeV. This result, when further combined with an earlier measurement of mH using data collected in 2011 and 2012 with the CMS detector, gives a value for the Higgs boson mass of mH=125.38±0.14GeV. This is currently the most precise measurement of the mass of the Higgs boson.

A measurement of the Higgs boson mass in the diphoton decay channel

Asenov P.;Bianchini L.;Ciocci M. A.;Messineo A.;Rizzi A.;Tonelli G.;Cipriani M.;Marini A. C.;
2020-01-01

Abstract

A measurement of the mass of the Higgs boson in the diphoton decay channel is presented. This analysis is based on 35.9fb−1 of proton-proton collision data collected during the 2016 LHC running period, with the CMS detector at a centre-of-mass energy of 13 TeV. A refined detector calibration and new analysis techniques have been used to improve the precision of this measurement. The Higgs boson mass is measured to be mH=125.78±0.26GeV. This is combined with a measurement of mH already performed in the H→ZZ→4ℓ decay channel using the same data set, giving mH=125.46±0.16GeV. This result, when further combined with an earlier measurement of mH using data collected in 2011 and 2012 with the CMS detector, gives a value for the Higgs boson mass of mH=125.38±0.14GeV. This is currently the most precise measurement of the mass of the Higgs boson.
2020
Sirunyan, A. M.; Tumasyan, A.; Adam, W.; Ambrogi, F.; Bergauer, T.; Dragicevic, M.; Ero, J.; Escalante Del Valle, A.; Flechl, M.; Fruhwirth, R.; Jeitl...espandi
File in questo prodotto:
File Dimensione Formato  
PhysLetB_805_135425.pdf

accesso aperto

Tipologia: Versione finale editoriale
Licenza: Creative commons
Dimensione 1.66 MB
Formato Adobe PDF
1.66 MB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11568/1074690
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 117
  • ???jsp.display-item.citation.isi??? 77
social impact