The potential use of paper sludge (PS) as filler in the production of bio-composites based on poly lactic acid (PLA) and polybutylene adipate terephthalate (PBAT) was investigated. PS/PLA/PBAT composites, with addition of acetyl tributyl citrate (ATBC) as biobased plasticizer, were produced with PS loadings up to 30 wt.% by twin-screw extrusion followed by injection mould-ing. The composites were characterized by rheological measurements, thermogravimetric analysis (TGA), differential scanning calorimetry (DSC) and mechanical tests (tensile and impact resistance) to study the effect of PS on the processability, thermal stability, crystallinity and mechanical performance of polymeric matrix. The optimized composites at higher PS content were successfully processed to produce pots for horticulture and, in view of this application, preliminary phytotoxicity tests were conducted using the germination test on Lepidium sativum L. seeds. Results revealed that developed composites up to 30 wt.% PS had good processability by extrusion and injection moulding showing that PS is a potential substitute of calcium carbonate as filler in the production of bio-composites, and the absence of phytotoxic effects showed the possibility of their use in the production of pots/items for applications in floriculture and/or horticulture.

On the use of paper sludge as filler in biocomposites for injection moulding

Gigante V.;Cinelli P.;Sandroni M.;D'ambrosio R.;Lazzeri A.;Seggiani M.
2021-01-01

Abstract

The potential use of paper sludge (PS) as filler in the production of bio-composites based on poly lactic acid (PLA) and polybutylene adipate terephthalate (PBAT) was investigated. PS/PLA/PBAT composites, with addition of acetyl tributyl citrate (ATBC) as biobased plasticizer, were produced with PS loadings up to 30 wt.% by twin-screw extrusion followed by injection mould-ing. The composites were characterized by rheological measurements, thermogravimetric analysis (TGA), differential scanning calorimetry (DSC) and mechanical tests (tensile and impact resistance) to study the effect of PS on the processability, thermal stability, crystallinity and mechanical performance of polymeric matrix. The optimized composites at higher PS content were successfully processed to produce pots for horticulture and, in view of this application, preliminary phytotoxicity tests were conducted using the germination test on Lepidium sativum L. seeds. Results revealed that developed composites up to 30 wt.% PS had good processability by extrusion and injection moulding showing that PS is a potential substitute of calcium carbonate as filler in the production of bio-composites, and the absence of phytotoxic effects showed the possibility of their use in the production of pots/items for applications in floriculture and/or horticulture.
2021
Gigante, V.; Cinelli, P.; Sandroni, M.; D'Ambrosio, R.; Lazzeri, A.; Seggiani, M.
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11568/1101594
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? 1
  • Scopus 7
  • ???jsp.display-item.citation.isi??? ND
social impact