Olive tree is a well-known source of polyphenols. We prepared an olive leaf extract (OLE) and characterized it via high performance liquid chromatography (HPLC) analysis. OLE was blended with different polyhydroxyalkanoates (PHAs), namely, poly(hydroxybutyrate-co-hydroxyvalerate) (PHBHV) and polyhydroxybutyrate/poly(hydroxyoctanoate-co-hydroxydecanoate) (PHB/PHOHD), to produce fiber meshes via electrospinning: OLE/PHBV and OLE/ (PHB/PHOHD), respectively. An 80–90% (w/w%) release of the main polyphenols from the OLE/PHA fibers occurred in 24 h, with a burst release in the first 30 min. OLE and the produced fiber meshes were assayed using human dermal keratinocytes (HaCaT cells) to evaluate the expression of a panel of cytokines involved in the inflammatory process and innate immune response, such as the antimicrobial peptide human beta defensin 2 (HBD-2). Fibers containing OLE were able to decrease the expression of the proinflammatory cytokines at 6 h up to 24 h. All the PHA fibers allowed an early downregulation of the pro-inflammatory cytokines in 6 h, which is suggestive of a strong anti-inflammatory activity exerted by PHA fibers. Differently from pure OLE, PHB/PHOHD fibers (both with and without OLE) upregulated the expression of HBD-2. Our results showed that PHA fiber meshes are suitable in decreasing pro-inflammatory cytokines and the incorporation of OLE may enable indirect antibac-terial properties, which is essential in wound healing and tissue regeneration.

Immunomodulatory activity of electrospun polyhydroxyalkanoate fiber scaffolds incorporating olive leaf extract

Azimi B.;Digiacomo M.;Coltelli M. B.;Macchia M.;Lazzeri A.;Danti S.
Penultimo
;
Di Stefano R.
Ultimo
2021-01-01

Abstract

Olive tree is a well-known source of polyphenols. We prepared an olive leaf extract (OLE) and characterized it via high performance liquid chromatography (HPLC) analysis. OLE was blended with different polyhydroxyalkanoates (PHAs), namely, poly(hydroxybutyrate-co-hydroxyvalerate) (PHBHV) and polyhydroxybutyrate/poly(hydroxyoctanoate-co-hydroxydecanoate) (PHB/PHOHD), to produce fiber meshes via electrospinning: OLE/PHBV and OLE/ (PHB/PHOHD), respectively. An 80–90% (w/w%) release of the main polyphenols from the OLE/PHA fibers occurred in 24 h, with a burst release in the first 30 min. OLE and the produced fiber meshes were assayed using human dermal keratinocytes (HaCaT cells) to evaluate the expression of a panel of cytokines involved in the inflammatory process and innate immune response, such as the antimicrobial peptide human beta defensin 2 (HBD-2). Fibers containing OLE were able to decrease the expression of the proinflammatory cytokines at 6 h up to 24 h. All the PHA fibers allowed an early downregulation of the pro-inflammatory cytokines in 6 h, which is suggestive of a strong anti-inflammatory activity exerted by PHA fibers. Differently from pure OLE, PHB/PHOHD fibers (both with and without OLE) upregulated the expression of HBD-2. Our results showed that PHA fiber meshes are suitable in decreasing pro-inflammatory cytokines and the incorporation of OLE may enable indirect antibac-terial properties, which is essential in wound healing and tissue regeneration.
2021
De la Ossa, J. G.; Fusco, A.; Azimi, B.; Salsano, J. E.; Digiacomo, M.; Coltelli, M. B.; De Clerck, K.; Roy, I.; Macchia, M.; Lazzeri, A.; Donnarumma,...espandi
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11568/1108718
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 17
  • ???jsp.display-item.citation.isi??? 16
social impact