BACKGROUND: The choice of EEG reference has been widely studied. However, the choice of the most appropriate re-referencing for EEG data is still debated. Moreover, the role of EEG reference in the estimation of functional Brain-Heart Interplay (BHI), together with different multivariate modelling strategies, has not been investigated yet. METHODS: This study identifies the best methodology combining a proper EEG electrical reference and signal processing methods for an effective functional BHI assessment. The effects of the EEG reference among common average, mastoids average, Laplacian reference, Cz reference, and the reference electrode standardization technique (REST) were explored throughout different BHI methods including synthetic data generation (SDG) model, heartbeat-evoked potentials, heartbeat-evoked oscillations, and maximal information coefficient. RESULTS: The SDG model exhibited high robustness between EEG references, whereas the maximal information coefficient method exhibited a high sensitivity. The common average and REST references for EEG showed a good consistency in the between-method comparisons. Laplacian, and Cz references significantly bias a BHI measurement. COMPARISON WITH EXISTING METHODS: The use of EEG reference based on a common average outperforms on the use of other references for consistency in estimating directed functional BHI. We do not recommend the use of EEG references based on analytical derivations as the experimental conditions may not meet the requirements of their optimal estimation, particularly in clinical settings. CONCLUSION: The use of a common average for EEG electrical reference is concluded to be the most appropriate choice for a quantitative, functional BHI assessment.

The role of electroencephalography electrical reference in the assessment of functional brain-heart interplay: From methodology to user guidelines

Catrambone V.;Valenza G.
2021-01-01

Abstract

BACKGROUND: The choice of EEG reference has been widely studied. However, the choice of the most appropriate re-referencing for EEG data is still debated. Moreover, the role of EEG reference in the estimation of functional Brain-Heart Interplay (BHI), together with different multivariate modelling strategies, has not been investigated yet. METHODS: This study identifies the best methodology combining a proper EEG electrical reference and signal processing methods for an effective functional BHI assessment. The effects of the EEG reference among common average, mastoids average, Laplacian reference, Cz reference, and the reference electrode standardization technique (REST) were explored throughout different BHI methods including synthetic data generation (SDG) model, heartbeat-evoked potentials, heartbeat-evoked oscillations, and maximal information coefficient. RESULTS: The SDG model exhibited high robustness between EEG references, whereas the maximal information coefficient method exhibited a high sensitivity. The common average and REST references for EEG showed a good consistency in the between-method comparisons. Laplacian, and Cz references significantly bias a BHI measurement. COMPARISON WITH EXISTING METHODS: The use of EEG reference based on a common average outperforms on the use of other references for consistency in estimating directed functional BHI. We do not recommend the use of EEG references based on analytical derivations as the experimental conditions may not meet the requirements of their optimal estimation, particularly in clinical settings. CONCLUSION: The use of a common average for EEG electrical reference is concluded to be the most appropriate choice for a quantitative, functional BHI assessment.
2021
Candia-Rivera, D.; Catrambone, V.; Valenza, G.
File in questo prodotto:
File Dimensione Formato  
2021_Candia_etal_JNMeth_BHIref.pdf

accesso aperto

Tipologia: Versione finale editoriale
Licenza: Creative commons
Dimensione 7.54 MB
Formato Adobe PDF
7.54 MB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11568/1115166
Citazioni
  • ???jsp.display-item.citation.pmc??? 9
  • Scopus 27
  • ???jsp.display-item.citation.isi??? 21
social impact