Background: The understanding of neurophysiological correlates underlying the risk of developing depression may have a significant impact on its early and objective identification. Research has identified abnormal resting-state electroencephalography (EEG) power and functional connectivity patterns in major depression. However, the entity of dysfunctional EEG dynamics in dysphoria is yet unknown. Methods: 32-channel EEG was recorded in 26 female individuals with dysphoria and in 38 age-matched, female healthy controls. EEG power spectra and alpha asymmetry in frontal and posterior channels were calculated in a 4-minute resting condition. An EEG functional connectivity analysis was conducted through phase locking values, particularly mean phase coherence. Results: While individuals with dysphoria did not differ from controls in EEG spectra and asymmetry, they exhibited dysfunctional brain connectivity. Particularly, in the theta band (4-8 Hz), participants with dysphoria showed increased connectivity between right frontal and central areas and right temporal and left occipital areas. Moreover, in the alpha band (8-12 Hz), dysphoria was associated with increased connectivity between right and left prefrontal cortex and between frontal and central-occipital areas bilaterally. Limitations: All participants belonged to the female gender and were relatively young. Mean phase coherence did not allow to compute the causal and directional relation between brain areas. Conclusions: An increased EEG functional connectivity in the theta and alpha bands characterizes dysphoria. These patterns may be associated with the excessive self-focus and ruminative thinking that typifies depressive symptoms. EEG connectivity patterns may represent a promising measure to identify individuals with a higher risk of developing depression.

Increased functional connectivity within alpha and theta frequency bands in dysphoria: A resting-state EEG study

Ghiasi S.;Greco A.;Valenza G.
2021-01-01

Abstract

Background: The understanding of neurophysiological correlates underlying the risk of developing depression may have a significant impact on its early and objective identification. Research has identified abnormal resting-state electroencephalography (EEG) power and functional connectivity patterns in major depression. However, the entity of dysfunctional EEG dynamics in dysphoria is yet unknown. Methods: 32-channel EEG was recorded in 26 female individuals with dysphoria and in 38 age-matched, female healthy controls. EEG power spectra and alpha asymmetry in frontal and posterior channels were calculated in a 4-minute resting condition. An EEG functional connectivity analysis was conducted through phase locking values, particularly mean phase coherence. Results: While individuals with dysphoria did not differ from controls in EEG spectra and asymmetry, they exhibited dysfunctional brain connectivity. Particularly, in the theta band (4-8 Hz), participants with dysphoria showed increased connectivity between right frontal and central areas and right temporal and left occipital areas. Moreover, in the alpha band (8-12 Hz), dysphoria was associated with increased connectivity between right and left prefrontal cortex and between frontal and central-occipital areas bilaterally. Limitations: All participants belonged to the female gender and were relatively young. Mean phase coherence did not allow to compute the causal and directional relation between brain areas. Conclusions: An increased EEG functional connectivity in the theta and alpha bands characterizes dysphoria. These patterns may be associated with the excessive self-focus and ruminative thinking that typifies depressive symptoms. EEG connectivity patterns may represent a promising measure to identify individuals with a higher risk of developing depression.
2021
Dell'Acqua, C.; Ghiasi, S.; Messerotti Benvenuti, S.; Greco, A.; Gentili, C.; Valenza, G.
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11568/1116046
Citazioni
  • ???jsp.display-item.citation.pmc??? 8
  • Scopus 24
  • ???jsp.display-item.citation.isi??? 18
social impact