In recent years, the spread of data-driven approaches for robotic grasp synthesis has come with the increasing need for reliable datasets, which can be built e.g. through video labelling. To this goal, it is important to define suitable rules to characterize the main human grasp types, for easily identifying them in video streams. In this work, we present a novel taxonomy that builds upon the related state of the art, but it is specifically thought for video labelling. It focuses on the interaction of the hand with the environment and accounts for pre-contact phases, bi-manual grasps as well as non-prehensile strategies. This study is complemented with a dataset of labelled videos of subjects performing activities of daily living, for a total of nine hours, and the description of MatLab tools for labelling new videos. Both hands were labelled at any time. We used these labelled data for performing a preliminary statistical description of the occurrences of the here proposed class types.

Understanding Human Manipulation with the Environment: A Novel Taxonomy for Video Labelling

Averta G.;Bicchi A.;Bianchi M.
Ultimo
Supervision
2021-01-01

Abstract

In recent years, the spread of data-driven approaches for robotic grasp synthesis has come with the increasing need for reliable datasets, which can be built e.g. through video labelling. To this goal, it is important to define suitable rules to characterize the main human grasp types, for easily identifying them in video streams. In this work, we present a novel taxonomy that builds upon the related state of the art, but it is specifically thought for video labelling. It focuses on the interaction of the hand with the environment and accounts for pre-contact phases, bi-manual grasps as well as non-prehensile strategies. This study is complemented with a dataset of labelled videos of subjects performing activities of daily living, for a total of nine hours, and the description of MatLab tools for labelling new videos. Both hands were labelled at any time. We used these labelled data for performing a preliminary statistical description of the occurrences of the here proposed class types.
2021
Arapi, V.; Della Santina, C.; Averta, G.; Bicchi, A.; Bianchi, M.
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11568/1116550
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 8
  • ???jsp.display-item.citation.isi??? 8
social impact