Essential oils represent novel alternatives to application of synthetic fungicides to control against seedborne pathogens. This study investigated seven essential oils for in vitro growth inhibition of the main seedborne pathogens of cucurbits. Cymbopogon citratus essential oil completely inhibited mycelial growth of Stagonosporopsis cucurbitacearum and Alternaria alternata at 0.6 and 0.9 mg/mL, respectively. At 1 mg/mL, Lavandula dentata, Lavandula hybrida, Melaleuca alternifolia, Laurus nobilis, and two Origanum majorana essential oils inhibited mycelia growth of A. alternata by 54%, 71%, 68%, 36%, 90%, and 74%, respectively. S. cucurbitacearum mycelia growth was more sensitive to Lavandula essential oils, with inhibition of ~74% at 1 mg/mL. To determine the main compounds in these essential oils that might be responsible for this antifungal activity, they were analyzed by gas chromatography–mass spectrometry (GC-MS). C. citratus essential oil showed cirtal as its main constituent, while L. dentata and L. nobilis essential oils showed eucalyptol. The M. alternifolia and two O. majorana essential oils had terpinen-4-ol as the major constituent, while for L. hybrida essential oil, this was linalool. Thus, in vitro, these essential oils can inhibit the main seedborne fungi of cucurbits, with future in vivo studies now needed to confirm these activities.

Antifungal activity and chemical composition of seven essential oils to control the main seedborne fungi of cucurbits

Najar B.;Pistelli L.
Writing – Review & Editing
;
2021-01-01

Abstract

Essential oils represent novel alternatives to application of synthetic fungicides to control against seedborne pathogens. This study investigated seven essential oils for in vitro growth inhibition of the main seedborne pathogens of cucurbits. Cymbopogon citratus essential oil completely inhibited mycelial growth of Stagonosporopsis cucurbitacearum and Alternaria alternata at 0.6 and 0.9 mg/mL, respectively. At 1 mg/mL, Lavandula dentata, Lavandula hybrida, Melaleuca alternifolia, Laurus nobilis, and two Origanum majorana essential oils inhibited mycelia growth of A. alternata by 54%, 71%, 68%, 36%, 90%, and 74%, respectively. S. cucurbitacearum mycelia growth was more sensitive to Lavandula essential oils, with inhibition of ~74% at 1 mg/mL. To determine the main compounds in these essential oils that might be responsible for this antifungal activity, they were analyzed by gas chromatography–mass spectrometry (GC-MS). C. citratus essential oil showed cirtal as its main constituent, while L. dentata and L. nobilis essential oils showed eucalyptol. The M. alternifolia and two O. majorana essential oils had terpinen-4-ol as the major constituent, while for L. hybrida essential oil, this was linalool. Thus, in vitro, these essential oils can inhibit the main seedborne fungi of cucurbits, with future in vivo studies now needed to confirm these activities.
2021
Moumni, M.; Romanazzi, G.; Najar, B.; Pistelli, L.; Amara, H. B.; Mezrioui, K.; Karous, O.; Chaieb, I.; Allagui, M. B.
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11568/1123979
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? 7
  • Scopus 31
  • ???jsp.display-item.citation.isi??? 25
social impact