1/f noise represents the dominant source of noise in the low-frequency range in several physical systems, including field-effect transistors. Its investigation can provide very important information on the fabrication process, highlighting the steps that are more prone to the introduction of defects. Here, 1/f noise in bilayer MoS2 transistors on paper with inkjet-printed Ag contacts and hBN dielectric is investigated. These devices are promising building blocks for future low-cost, flexible, and easily recyclable disposable electronics. The analysis of 1/f noise, performed following Hooge's empirical approach, results in a Hooge parameter ≈1–10, which is comparable to those reported for bilayer MoS2 transistors on SiO2. The present results indicate that the noise properties of the investigated devices are stable against substrate bending and are mainly determined by the printing of the dielectric, while not being sensibly affected by the use of the paper substrate. These results are promising for the further development of low noise 2D material-based flexible electronics on paper.

1/f Noise Characterization of Bilayer MoS2 Field-Effect Transistors on Paper with Inkjet-Printed Contacts and hBN Dielectrics

Pimpolari L.;Calabrese G.;Conti S.;Casiraghi C.;Iannaccone G.;Macucci M.;Fiori G.
2021-01-01

Abstract

1/f noise represents the dominant source of noise in the low-frequency range in several physical systems, including field-effect transistors. Its investigation can provide very important information on the fabrication process, highlighting the steps that are more prone to the introduction of defects. Here, 1/f noise in bilayer MoS2 transistors on paper with inkjet-printed Ag contacts and hBN dielectric is investigated. These devices are promising building blocks for future low-cost, flexible, and easily recyclable disposable electronics. The analysis of 1/f noise, performed following Hooge's empirical approach, results in a Hooge parameter ≈1–10, which is comparable to those reported for bilayer MoS2 transistors on SiO2. The present results indicate that the noise properties of the investigated devices are stable against substrate bending and are mainly determined by the printing of the dielectric, while not being sensibly affected by the use of the paper substrate. These results are promising for the further development of low noise 2D material-based flexible electronics on paper.
2021
Pimpolari, L.; Calabrese, G.; Conti, S.; Worsley, R.; Majee, S.; Polyushkin, D. K.; Paur, M.; Casiraghi, C.; Mueller, T.; Iannaccone, G.; Macucci, M.; Fiori, G.
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11568/1127381
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 6
  • ???jsp.display-item.citation.isi??? 4
social impact