Ozone (O3) is a phytotoxic air pollutant capable of limiting plant yield and growth, and altering the quality of edible plant products. This study aimed to investigate the effects of long-term O3 exposure at realistic and future concentrations (applied during fruit development) not only on morphological, physiological, and biochemical plant/leaf traits of Vaccinium myrtillus but also on its fruit yield and quality. Three-year-old saplings were grown from May to July under three levels of O3 concentration [1.0, 1.5 and 2.0 times the ambient air concentrations, denoted as AA, 1.5_AA and 2.0_AA], using a new-generation O3 Free Air Controlled Exposure system. Ozone induced oxidative pressure and membrane denaturation as confirmed by the accumulation of anion superoxide, hydrogen peroxide (•O2−: +39 and + 29%; H2O2: +55 and + 59% in 1.5_AA and 2.0_AA, respectively, compared with AA), and malondialdehyde by-product (1.4- and 2.5-fold higher than AA, in 1.5_AA and 2.0_AA, respectively). The observed oxidative burst likely affected several cellular structures interested by photosynthetic processes (e.g., decrease of the maximum rate of carboxylation: −30%). This constraint likely induced a decline in plant vitality and a different partitioning of biomass allocation between above and below organs. An accelerated maturation of bilberries due to O3 was reported, suggesting that plants grown under harsher environmental conditions suffered from metabolic changes associated with early ripening. Increasing O3 concentrations might be responsible for an alteration of the ratio between oxidation and reduction processes mechanisms that was followed by a loss of integrity of membranes, so limiting the availability of energy/resources, triggering enzymatic oxidation of phenols to red/purple pigments, and promoting fruit maturation. To the best of our knowledge, this is the first research showing that long-term O3 exposure during bilberry fruit development influenced not only several plant/leaf traits, but also fruit nutraceutical quality at the time of harvest.
Season-long exposure of bilberry plants to realistic and future ozone pollution improves the nutraceutical quality of fruits
Lorenzo Cotrozzi
;Alessandra Marchica;Giacomo Lorenzini;Cristina Nali;Elisa Pellegrini
2022-01-01
Abstract
Ozone (O3) is a phytotoxic air pollutant capable of limiting plant yield and growth, and altering the quality of edible plant products. This study aimed to investigate the effects of long-term O3 exposure at realistic and future concentrations (applied during fruit development) not only on morphological, physiological, and biochemical plant/leaf traits of Vaccinium myrtillus but also on its fruit yield and quality. Three-year-old saplings were grown from May to July under three levels of O3 concentration [1.0, 1.5 and 2.0 times the ambient air concentrations, denoted as AA, 1.5_AA and 2.0_AA], using a new-generation O3 Free Air Controlled Exposure system. Ozone induced oxidative pressure and membrane denaturation as confirmed by the accumulation of anion superoxide, hydrogen peroxide (•O2−: +39 and + 29%; H2O2: +55 and + 59% in 1.5_AA and 2.0_AA, respectively, compared with AA), and malondialdehyde by-product (1.4- and 2.5-fold higher than AA, in 1.5_AA and 2.0_AA, respectively). The observed oxidative burst likely affected several cellular structures interested by photosynthetic processes (e.g., decrease of the maximum rate of carboxylation: −30%). This constraint likely induced a decline in plant vitality and a different partitioning of biomass allocation between above and below organs. An accelerated maturation of bilberries due to O3 was reported, suggesting that plants grown under harsher environmental conditions suffered from metabolic changes associated with early ripening. Increasing O3 concentrations might be responsible for an alteration of the ratio between oxidation and reduction processes mechanisms that was followed by a loss of integrity of membranes, so limiting the availability of energy/resources, triggering enzymatic oxidation of phenols to red/purple pigments, and promoting fruit maturation. To the best of our knowledge, this is the first research showing that long-term O3 exposure during bilberry fruit development influenced not only several plant/leaf traits, but also fruit nutraceutical quality at the time of harvest.I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.