Torsional and axial fatigue tests were performed on steel 42CrMo4+QT and aluminium alloy 7075-T6, and a 3D optical profilometer was used for the investigations of the fracture surfaces. The mode I and mode III critical distances of the two materials were regarded as reference scales for evaluating the initial orientation of the cracks and then identifying the tests valid for the calibration of the normal and those for the shear-fatigue models. The torsional strength of blunt notched specimens was then predicted with the Smith-Watson-Topper and the Fatemi-Socie criteria, combined with the critical distances and the Chaboche model for the steel.
Torsional-loaded notched specimen fatigue strength prediction based on mode I and mode III critical distances and fracture surface investigations with a 3D optical profilometer
C. Santus
Primo
;L. RomanelliSecondo
;T. Grossi;P. Neri;L. Romoli;
2022-01-01
Abstract
Torsional and axial fatigue tests were performed on steel 42CrMo4+QT and aluminium alloy 7075-T6, and a 3D optical profilometer was used for the investigations of the fracture surfaces. The mode I and mode III critical distances of the two materials were regarded as reference scales for evaluating the initial orientation of the cracks and then identifying the tests valid for the calibration of the normal and those for the shear-fatigue models. The torsional strength of blunt notched specimens was then predicted with the Smith-Watson-Topper and the Fatemi-Socie criteria, combined with the critical distances and the Chaboche model for the steel.File | Dimensione | Formato | |
---|---|---|---|
International Journal of Fatigue, 2022, 161, 106913.pdf
Open Access dal 02/09/2024
Tipologia:
Documento in Post-print
Licenza:
Creative commons
Dimensione
2.22 MB
Formato
Adobe PDF
|
2.22 MB | Adobe PDF | Visualizza/Apri |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.