Cluster-based permutation tests are widely used in neuroscience studies for the analysis of high-dimensional electroencephalography (EEG) and event-related potential (ERP) data as it may address the multiple comparison problem without reducing the statistical power. However, classical cluster-based permutation analysis relies on parametric t-tests, whose assumptions may not be verified in case of non-normality of the data distribution and alternative options may be considered. To overcome this limitation, here we present a new software for a cluster permutation analysis for EEG series based on non-parametric Wilcoxon–Mann–Whitney tests. We tested both t-test and non-parametric Wilcoxon implementations in two independent datasets of ERPs and EEG spectral data: while t-test-based and non-parametric Wilcoxon-based cluster analyses showed similar results in case of ERP data, the t-test implementation was not able to find clustered effects in case of spectral data. We encourage the use of non-parametric statistics for a cluster permutation analysis of EEG data, and we provide a publicly available software for this computation.

Cluster permutation analysis for EEG series based on non-parametric Wilcoxon–Mann–Whitney statistical tests

Valenza G.
2022-01-01

Abstract

Cluster-based permutation tests are widely used in neuroscience studies for the analysis of high-dimensional electroencephalography (EEG) and event-related potential (ERP) data as it may address the multiple comparison problem without reducing the statistical power. However, classical cluster-based permutation analysis relies on parametric t-tests, whose assumptions may not be verified in case of non-normality of the data distribution and alternative options may be considered. To overcome this limitation, here we present a new software for a cluster permutation analysis for EEG series based on non-parametric Wilcoxon–Mann–Whitney tests. We tested both t-test and non-parametric Wilcoxon implementations in two independent datasets of ERPs and EEG spectral data: while t-test-based and non-parametric Wilcoxon-based cluster analyses showed similar results in case of ERP data, the t-test implementation was not able to find clustered effects in case of spectral data. We encourage the use of non-parametric statistics for a cluster permutation analysis of EEG data, and we provide a publicly available software for this computation.
2022
Candia-Rivera, D.; Valenza, G.
File in questo prodotto:
File Dimensione Formato  
PIIS2352711022001042.pdf

accesso aperto

Tipologia: Versione finale editoriale
Licenza: Creative commons
Dimensione 1.23 MB
Formato Adobe PDF
1.23 MB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11568/1156368
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 3
  • ???jsp.display-item.citation.isi??? 2
social impact