Multiplication algorithms in primary school are still frequently introduced with little attention to meaning. We present a case study focusing on a third grade class that engaged in comparing two algorithms and discussing “why they both work”. The objectives of the didactical intervention were to foster students' development of mathematical meanings concerning multiplication algorithms, and of an attitude to judge and compare the value and efficiency of different algorithms. Underlying hypotheses were that it is possible to promote the simultaneous unfolding of the semiotic potential of two algorithms, considered as cultural artifacts, with respect to the objectives of the didactical intervention, and to establish a fruitful synergy between the two algorithms. As results, this study brings to light the new theoretical construct of “bridging sign”, illuminating students’ meaning-making processes involving more than one artifact; and provides important insight into the actual unfolding of the hypothesized potential of the algorithms.
Learning about multiplication by comparing algorithms: “One times one, but actually they are ten times ten”
Baccaglini-Frank, Anna;Funghi, Silvia
;Maracci, Mirko;Ramploud, Alessandro
2022-01-01
Abstract
Multiplication algorithms in primary school are still frequently introduced with little attention to meaning. We present a case study focusing on a third grade class that engaged in comparing two algorithms and discussing “why they both work”. The objectives of the didactical intervention were to foster students' development of mathematical meanings concerning multiplication algorithms, and of an attitude to judge and compare the value and efficiency of different algorithms. Underlying hypotheses were that it is possible to promote the simultaneous unfolding of the semiotic potential of two algorithms, considered as cultural artifacts, with respect to the objectives of the didactical intervention, and to establish a fruitful synergy between the two algorithms. As results, this study brings to light the new theoretical construct of “bridging sign”, illuminating students’ meaning-making processes involving more than one artifact; and provides important insight into the actual unfolding of the hypothesized potential of the algorithms.I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.