This study focused on the development of a novel biocomposite material formed by a thermoplastic biodegradable polyester, poly(butylene succinate-co-adipate) (PBSA), and a carbonaceous filler as biochar (BC) derived by the pyrolysis of woody biomass waste. Composites with various BC contents (5, 10, 15, and 20 wt.%) were obtained by melt extrusion and investigated in terms of their processability, thermal, rheological, and mechanical properties. In all the composites, BC lowered melt viscosity, behaving as a lubricant, and enhancing composite extrudability and injection moulding at high temperatures up to 20 wt.% of biochar. While the use of biochar did not significantly change composite thermal stability, it increased its stiffness (Young modulus). Differential scanning calorimeter (DSC) revealed the presence of a second crystal phase induced by the filler addition. Furthermore, results suggest that biochar may form a particle network that hinders polymer chain disentanglement, reducing polymer flexibility. A biochar content of 10 wt.% was selected as the best trade-off concentration to improve the composite processability and cost competitiveness without compromising excessively the tensile properties. The findings support the use of biochar as a sustainable renewable filler and pigment for PBSA. Biochar is a suitable candidate to replace more traditional carbon black pigments for the production of biodegradable and inexpensive innovative PBSA composites with potential fertilizing properties to be used in agricultural applications.

Wood Residue-Derived Biochar as a Low-Cost, Lubricating Filler in Poly(butylene succinate-co-adipate) Biocomposites

Miriam Cappello;Damiano Rossi
;
Sara Filippi;Patrizia Cinelli;Maurizia Seggiani
2023-01-01

Abstract

This study focused on the development of a novel biocomposite material formed by a thermoplastic biodegradable polyester, poly(butylene succinate-co-adipate) (PBSA), and a carbonaceous filler as biochar (BC) derived by the pyrolysis of woody biomass waste. Composites with various BC contents (5, 10, 15, and 20 wt.%) were obtained by melt extrusion and investigated in terms of their processability, thermal, rheological, and mechanical properties. In all the composites, BC lowered melt viscosity, behaving as a lubricant, and enhancing composite extrudability and injection moulding at high temperatures up to 20 wt.% of biochar. While the use of biochar did not significantly change composite thermal stability, it increased its stiffness (Young modulus). Differential scanning calorimeter (DSC) revealed the presence of a second crystal phase induced by the filler addition. Furthermore, results suggest that biochar may form a particle network that hinders polymer chain disentanglement, reducing polymer flexibility. A biochar content of 10 wt.% was selected as the best trade-off concentration to improve the composite processability and cost competitiveness without compromising excessively the tensile properties. The findings support the use of biochar as a sustainable renewable filler and pigment for PBSA. Biochar is a suitable candidate to replace more traditional carbon black pigments for the production of biodegradable and inexpensive innovative PBSA composites with potential fertilizing properties to be used in agricultural applications.
2023
Cappello, Miriam; Rossi, Damiano; Filippi, Sara; Cinelli, Patrizia; Seggiani, Maurizia
File in questo prodotto:
File Dimensione Formato  
materials-16-00570.pdf

accesso aperto

Tipologia: Versione finale editoriale
Licenza: Creative commons
Dimensione 5.76 MB
Formato Adobe PDF
5.76 MB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11568/1163505
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 9
  • ???jsp.display-item.citation.isi??? 9
social impact