Wireless Sensor and Actuator Networks (WSANs) are an effective technology for improving the efficiency and productivity in many industrial domains, and are also the building blocks for the Industrial Internet of Things (IIoT). To support this trend, the IEEE has defined the 802.5.4 Time-Slotted Channel Hopping (TSCH) protocol. Unfortunately, TSCH does not provide any mechanism to manage node mobility, while many current industrial applications involve Mobile Nodes (MNs), e.g., mobile robots or wearable devices carried by workers. In this article, we present a framework to efficiently manage mobility in TSCH networks, by proposing an enhanced version of the Synchronized Single-hop Multiple Gateway (SHMG) architecture. We first define a flexible scheduling algorithm, called Shared Downstream-Dedicated Upstream (SD-DU) , that can be configured to adapt to different types of traffic in industrial applications. Then, we develop a mathematical framework to formalize the problem of Border Routers (BRs) placement to guarantee the complete coverage of the deployment area, in the presence of obstacles and unreliable communication. A methodology for network sizing is also proposed to calculate the maximum number of MNs that can be supported by the network without violating the application requirements. Finally, we evaluate the performance of the proposed solutions, both analytically and through simulations. Our results show that the proposed enhancements allow a very effective management of node mobility, by providing mobility transparency without a significant impact on performance.

Mobility Management in TSCH-based Industrial Wireless Networks

Marco Pettorali;Francesca Righetti;Carlo Vallati;Giuseppe Anastasi
2024-01-01

Abstract

Wireless Sensor and Actuator Networks (WSANs) are an effective technology for improving the efficiency and productivity in many industrial domains, and are also the building blocks for the Industrial Internet of Things (IIoT). To support this trend, the IEEE has defined the 802.5.4 Time-Slotted Channel Hopping (TSCH) protocol. Unfortunately, TSCH does not provide any mechanism to manage node mobility, while many current industrial applications involve Mobile Nodes (MNs), e.g., mobile robots or wearable devices carried by workers. In this article, we present a framework to efficiently manage mobility in TSCH networks, by proposing an enhanced version of the Synchronized Single-hop Multiple Gateway (SHMG) architecture. We first define a flexible scheduling algorithm, called Shared Downstream-Dedicated Upstream (SD-DU) , that can be configured to adapt to different types of traffic in industrial applications. Then, we develop a mathematical framework to formalize the problem of Border Routers (BRs) placement to guarantee the complete coverage of the deployment area, in the presence of obstacles and unreliable communication. A methodology for network sizing is also proposed to calculate the maximum number of MNs that can be supported by the network without violating the application requirements. Finally, we evaluate the performance of the proposed solutions, both analytically and through simulations. Our results show that the proposed enhancements allow a very effective management of node mobility, by providing mobility transparency without a significant impact on performance.
2024
Pettorali, Marco; Righetti, Francesca; Vallati, Carlo; Das, Sajal K.; Anastasi, Giuseppe
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11568/1220027
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 1
  • ???jsp.display-item.citation.isi??? 1
social impact