This letter concerns control-oriented and structure-preserving learning of low-dimensional approximations of high-dimensional physical systems, with a focus on mechanical systems. We investigate the integration of neural autoencoders in model order reduction, while at the same time preserving Hamiltonian or Lagrangian structures. We focus on extensively evaluating the considered methodology by performing simulation and control experiments on large mass-spring-damper networks, with hundreds of states. The empirical findings reveal that compressed latent dynamics with less than 5 degrees of freedom can accurately reconstruct the original systems’ transient and steady-state behavior with a relative total error of around 4%, while simultaneously accurately reconstructing the total energy. Leveraging this system compression technique, we introduce a model-based controller that exploits the mathematical structure of the compressed model to regulate the configuration of heavily underactuated mechanical systems.

Neural Autoencoder-Based Structure-Preserving Model Order Reduction and Control Design for High-Dimensional Physical Systems

Marco Lepri;Davide Bacciu
;
Cosimo Della Santina
2023-01-01

Abstract

This letter concerns control-oriented and structure-preserving learning of low-dimensional approximations of high-dimensional physical systems, with a focus on mechanical systems. We investigate the integration of neural autoencoders in model order reduction, while at the same time preserving Hamiltonian or Lagrangian structures. We focus on extensively evaluating the considered methodology by performing simulation and control experiments on large mass-spring-damper networks, with hundreds of states. The empirical findings reveal that compressed latent dynamics with less than 5 degrees of freedom can accurately reconstruct the original systems’ transient and steady-state behavior with a relative total error of around 4%, while simultaneously accurately reconstructing the total energy. Leveraging this system compression technique, we introduce a model-based controller that exploits the mathematical structure of the compressed model to regulate the configuration of heavily underactuated mechanical systems.
2023
Lepri, Marco; Bacciu, Davide; DELLA SANTINA, Cosimo
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11568/1221627
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus ND
  • ???jsp.display-item.citation.isi??? ND
social impact